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This study evaluated the effect of chemical oxidation on the bioremediation of polycyclic 

aromatic hydrocarbons (PAHs) contaminated sediments.  Sediments were treated in sequential 

steps:biotreatment, chemicaloxidation, and biotreatment. The first biotreatment step was initiated 

via addition of nutrients, microbial seeds, co-metabolites, and/or Tween 80 (surfactant). The 

chemical oxidation step was conducted using Fenton’s Reagent, ozonation, and peroxone 

(combination of ozone and hydrogen peroxide). The objective was to enhance the PAHs 

bioavailabilityvia oxidationofnaturalorganic matter and transformationofHeavy PAHs into more 

biodegradable compounds.  Biotreatment was reestablished as a final polishing step to further 

degrade remaining PAHs and more biodegradable oxidation by-products.  The proposed 

mechanism was proven successful for the less contaminated sediment (Scioto River) and not the 

highlycontaminatedand chemicallymorecomplexsediment (Lake Superior).Giventhismechanism 
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      only worked for the Scioto River sediment, further research is required to determine the 

mechanisms limiting treatment. 
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CHAPTER I 

INTRODUCTION 

Background 

Petroleum has been used throughout history.  The Egyptians used it to coat 

mummies in order to preserve bodies, while Native-Americans used it for paint and 

medicinal purposes (Schackne and Drake, 1950).  In 1859, Colonel Drake discovered oil 

in Pennsylvania resulting in 15 petroleum refineries being constructed over the next year. 

From that point on, the industrial exploitation of oil began. Today, it is estimated that 

annual global production of crude oil has reached more than two billion metric tons (Jing, 

1998).  The usage of petroleum has expanded from its use as a fuel to a feedstock for 

thousands of commercial chemicals. 

Crude petroleum is a liquid mixture of literally thousands of compounds, more 

specifically alkanes, cyclo-alkanes, aromatic hydrocarbons, and small amounts of 

oxygen, nitrogen, and sulfur containing compounds (Atlas, 1981; Jing, 1998).  Petroleum 

is so complex that the crude form is practically of no commercial value until it is refined 

into hydrocarbon fractions. 

Polycyclic aromatic hydrocarbons (PAHs) are one of the most prevalent 

petroleum hydrocarbons forms.  Many are of concern to the public because of their 

carcinogenic properties.  The National Academy of Sciences has classified eleven of the 

1 
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forty identified PAHs as being strongly carcinogenic or mutagenic, while ten others are 

regarded as being weakly carcinogenic and mutagenic (NAS, 1972).  Of the 120 

compounds defined as priority pollutants by United States Environmental Protection 

Agency (USEPA), sixteen are PAHs (Keith and Telliard, 1979; Heitkamp and Cerniglia, 

1988).  Table 1.1 presents the structural and chemical characteristics of the regulated 

PAHs. USEPA regulated PAHs range from two to six rings, with the higher ringed 

PAHs (also known as Heavy PAHs) considered carcinogenic (Jones and Leber, 1979; 

Lehr et al., 1979; Zappi et al., 1993).  In general, Heavy PAHs are also known to be 

recalcitrant to biodegradation; thus, resulting in low removal rates during wastewater and 

soil treatment. 

Human exposure to PAHs may occur from activities such as petroleum refining, 

coke and aluminum production, coal combustion, and wood preservation (Heitkamp et 

al., 1987).  Contamination of PAHs in groundwater and soil systems can create problems 

with serious implications to human health and the environment due to the following 

reasons: 

(1) PAHs are relatively toxic with some considered mutagenic and/or carcinogenic, 
even at low concentrations 

(2) PAHs have high bio-accumulation potentials (Park et al., 1990) 

(3) The production and usage of PAHs in mass quantities making it impossible to 
predict the extent of damage to the environment (Dzombak and Luthy, 1984) 

(4) Heavy PAHs pose an additional problem of being persistent within soil 
environments (Zappi et al., 1993; Ye et al., 1996). 
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Traditional Soil Treatment Options 

Treatment of PAH contaminated sediment has generally been limited to 

incineration, thermal desorption, soil washing, and bioremediation (Averett et al., 1990; 

Acar and Zappi, 1995).  The following sections elaborate on the treatment of PAH 

contaminated soil and sediment using various techniques.  Background on chemical 

oxidation, a developing process for soil and sediment treatment, is also included because 

it is key to this research project. 

Thermal Approaches 

Incineration is a well-developed method of ultimate waste disposal.  It is efficient 

at destroying organic contaminants, such as PAHs; thereby, reducing the waste and 

destroying their toxicity.  Incineration operates at temperatures above 1,800oF in the 

presence of oxygen to thermally oxidize organic compounds (Long, 1993).  USEPA has 

reported that a good incineration system can have a Destruction Removal Efficiency 

(DRE) greater than 99.99%.  Organic wastes are usually converted into carbon 

monoxide, carbon dioxide, water, and ash.  Since carbon monoxide is hazardous, it is 

necessary to install secondary treatment facilities, such as afterburners, scrubbers, and 

filtration units, to treat the carbon monoxide.  The drawbacks of using the incineration 

method are high capital costs and also the possibility of secondary pollution caused by 

incomplete combustion (USEPA, 1996).  Additionally, the use of incinerations are not 

well received by the public. 

Thermal desorption has been proven to be effective for volatile organic and semi-

volatile organic contaminants (Downey and Elliott, 1990; Jing, 1998). It uses transferred 
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heat and the volatility of the pollutants to physically separate organic contaminants from 

the solid phase.  In a thermal desorption chamber, soil is heated within the chamber 

where the water and organic contaminants are vaporized.  Volatilized contaminants and 

water are then transported via gas emission to an off-gas treatment system.  Selection of a 

gas treatment system is based on the concentration of contaminants, regulations, and the 

economics involved (Lighty et al., 1993).  Drawbacks to thermal desorption system are 

costs and the partial breakdown of volatile organics resulting in the formation of new 

organic compounds (e.g., dioxin and furans) that might have an adverse impact on human 

health (USEPA, 1997). 

Soil Washing 

Soil washing utilizes water-based solutions to treat excavated soil.  This system 

can be utilized to treat PAHs, pentachlorophenol, and petroleum wastes (USEPA, 1992; 

Wang, 1999).  Contaminants are physically removed using the abrasive scouring action 

of the particles themselves.  The scrubbing process breaks up the soil; thus, freeing the 

contaminants from the coarser material.  Sometimes, surfactant and other agents (e.g., 

alcohols) can be added to improve the scrubbing process and possibly enhance pollutant 

release from the soil. Contaminated residual products are treated using thermal 

desorption, incineration, or bioremediation (Wang, 1999). The advantages of the soil 

washing system are the high removal efficiency of contaminants from the soil phase and 

reduction in volume of the waste products.  Possible drawbacks to the soil washing 

system are the high maintenance costs and elevated economics when strongly bonded 

contaminants are present. 
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Bioremediation 

Bioremediation utilizes microorganisms (i.e., algae, fungi, and bacteria) to 

degrade organic contaminations into biomass and metabolic products (Mihelcic and 

Luthy, 1987; Lauch et al., 1992).  Given that bioremediation is considered a natural 

process, bioremediation is generally well accepted by the public as an environmentally 

friendly alternative. 

Microorganisms are vital to bioremediation processes because of their ability to 

transform organic and inorganic compounds into environmentally benign chemicals. 

Organic compounds are degraded through natural biochemical reactions to provide 

energy to sustain growth and metabolic functions. In general, bioremediation processes 

involve stimulation of microorganisms to biologically degrade organic contaminants 

present within environmental media (i.e., groundwater aquifers and soils). 

Microorganisms have the capability of degrading a wide variety of compounds, 

including PAHs (Singer and Finnerty, 1984; Cerniglia, 1984; Zappi et al., 1996; Wang, 

1999), explosives (Zappi et al., 1995), and pentachlorophenol (Focht and Brunner, 1985; 

Valo et al., 1986).  Bioremediation is easy to implement and generally cost effective. 

Drawbacks can include long treatment times and the generation of persistent by-products. 

Chemical Oxidation 

Oxidation-based treatment technologies, such as advanced oxidation processes 

(AOPs) and ozonation, are based on the use of powerful chemical oxidizers for pollutant 

removal.  They have recently been proposed as alternative and potentially cost 

competitive methods for soil remediation. 
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Advanced Oxidation Processes 

Processes that destroy organic contaminants using the hydroxyl radical are known 

as advanced oxidation processes (AOP) (Glaze, 1987).  The hydroxyl radical is one of the 

strongest oxidants known (Zappi et al., 1995).  It is stable over a wide range of pH. It has 

been reported that AOPs have the capacity to oxidize recalcitrant compounds and 

transform them to potentially less toxic and more readily biodegradable intermediate 

products (Huang et al., 1993).  AOPs have been successfully used for treating chlorinated 

solvents, polychlorinated biphenyls (PCBs), PAHs, and explosives (Adams and Randke, 

1992; Trapido et al, 1994; Zappi 1995; Yao et al., 1996). 

AOPs can be divided into two categories: lighted and dark. AOPs that require 

ultra violet (UV) light to initiate the hydroxyl radical formation are called lighted AOPs 

(Hong et al., 1996).  Lighted AOPs are unfavorable within a soil system due to limited 

transmission of UV light that is essential to the formation of the radicals.  AOPs that do 

not utilize UV sources to initiate the formation of hydroxyl radicals are termed as dark 

AOPs (Hong et al., 1996).  Potential dark AOPs that may be useful within soil systems 

are Fenton’s Reagent (hydrogen peroxide and ferrous ion) and peroxone (ozone and 

hydrogen peroxide). 

Ozone 
Ozone is an unstable gas that has a characteristic penetrating odor that can be 

detected at low concentrations (Rice, 1980). Traditionally, ozone has been used to 

disinfect and decontaminate drinking water and wastewater (Glaze, 1987; Rittmann and 

McCarty, 2001).  Nevertheless, research has shown that ozone has the capability to 
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degrade a variety of pesticides and herbicides such as atrazine, cynazine, and metolachlor 

(Somich et al., 1990; Long, 1993).  In addition, ozone has been reported to be an 

effective oxidant for degrading PAHs (Cornell and Kuo, 1984; Trapido et al., 1994; 

Beltran et al., 1995). 
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Table 1.1. Structural and Chemical Characteristics of 16 PAHs Regulated by USEPA1 

Compound Molecular 
Weight 

Molecular 
Formula 

Molecular 
Structure 

Aqueous 
Solubility2 

Light PAHs 

Two rings: 

Naphthalene 128 C10H8 
31,700 

Three rings: 

Acenaphthylene 152 C12H8 
N/A 

Acenaphthene 154 C12H10 
3,930 

Fluorene 166 C13H10 
1,980 

Anthracene 178 C14H10 
73 

Phenanthrene 178 C14H10 
1,290 

Notes: 
1 United States Environmental Protection Agency 
2 Concentrations are in units of µg/l (ppb) at 25oC 
- N/A : Not available 
- Adapted from Dzombak and Luthy (1984) 
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Table 1.1. (Continued) 

Compound Molecular 
Weight 

Molecular 
Formula 

Molecular 
Structure 

Aqueous 
Solubility2 

Heavy PAHs 

Four rings: 

Fluoranthene 202 C16H10 
260 

Pyrene 202 C16H10 
135 

Benzo[a]anthracene 228 C18H12 
14 

Chrysene 228 C18H12 
2 

Five rings: 

Benzo[b]fluoranthene 252 C20H12 
N/A 

Notes: 
1 United States Environmental Protection Agency 
2 Concentrations are in units of µg/l (ppb) at 25oC 
- N/A : Not available 
- Adapted from Dzombak and Luthy (1984) 



www.manaraa.com

10 

Table 1.1. (Continued) 

Compound Molecular 
Weight 

Molecular 
Formula 

Molecular 
Structure 

Aqueous 
Solubility2 

Five rings: 

Benzo[k]fluoranthene 252 C20H12 
N/A 

Benzo[a]pyrene 252 C20H12 

3.8 

Dibenz[a,h]anthracene 278 C22H14 

2.49 

Six rings: 

Benzo[g,h,i]perylene 276 C22H12 

0.26 

Indeno[1,2,3-cd] 
pyrene 

276 C22H12 
N/A 

Notes: 
1 United States Environmental Protection Agency 
2 Concentrations are in units of µg/l (ppb) at 25oC 
- N/A : Not available 
- Adapted from Dzombak and Luthy (1984) 
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CHAPTER II 

PAST RESEARCH EFFORTS 

Contaminated Sediment Issues 

Reports indicate at least 1.2 billioncubic yardsofcontaminatedsedimentsinUnited States. 

These data are based on surveys conducted from 1980-1993 on contaminated sites that were 

deemed to be detrimentalto humanhealthand to the environment (U.S. House ofRepresentatives, 

2002).  In addition, between 1980-1983, slightly over half of the 15 million cubic meters of 

sediments dredged fromthe GreatLakes to improve the navigationsystemwere placed inconfined 

disposal facilities because of significant contaminants (IAGLR Org., 2002). 

Among the identified contamination sources for sediments are sewage treatment plants, 

disposal of wastes, run-off from mining, farms, construction areas, and urban areas. The 

contaminants that are washed off via surface transport usually end up in the rivers or lakes.  The 

fate of these contaminants within the sediments varies and depends on the contaminant’s 

susceptibilitytomicrobialdegradation.  Some contaminants (e.g., polychlorinated biphenyls, PAHs, 

and heavy metals) are known to resist biodegradation; thus, they persist within the sediments and 

pose a significant threat to both human health and the aquatic ecosystem. 

The contaminants in the sediments have been grouped into five different major categories: 

nutrients,bulk organics(aliphatic),PAHs,halogenatedhydrocarbons, and metals (USEPA, 2002). 

11 
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Some of the compounds fromthesecategories, suchas PAHs (e.g., benzo[a]pyrene), halogenated 

hydrocarbons (i.e., PCBs), and metals (e.g., arsenic), areconsideredtoxic tohumans,animals, and 

plants.  In addition to being toxic and carcinogenic (e.g., benzo[a]pyrene) (NAS, 1972), some are 

known to posses high bio-accumulation potentials (Park et al., 1990).  A variety of aquatic 

organisms, suchasworms and crustaceans, feed off the bottomof the sediments where a significant 

portion of the contaminants reside.  Some toxic contaminants might kill these aquatic creatures; 

thus, reducing the food source for animals higher up in the food chain.  On the other hand, if the 

aquatic organisms survive the exposure, the contaminants can bio-accumulate within tissues and 

pose significant threats to bothhumans and aquatic-dependent predatory wildlife as these aquatic 

organisms are consumed up the food chain (Averett et al., 1990). 

Contaminated sediments issues are addressed by the USEPA, U.S. Army Corps of 

Engineers, and other federal, state, and local agencies.  Among the main issues being addressed 

are the identificationof the contaminatedareas,confinement ofcontaminations,  prevention of future 

contaminations, and also the implementation of remediationtechnologies.  In general, the clean up 

costs of contaminated sediments are expensive because they include excavation, transportation, 

treatment, and disposal (USEPA, 2002).  The types of remediation technologies chosen vary from 

site to site, but they are usually dependent on the type of contaminants. For example, among the 

identified treatment technologies are biological (e.g., composting, bioreactors, and enzymes), 

chemical (e.g., oxidation of organics and inorganics, reduction of organics and inorganics, and 

chelation), extraction (e.g., soil washing, steam stripping, and surfactants), immobilization (e.g., 

organic polymerization, sorption, and encapsulation), radiant energy (e.g., photolysis), and thermal 
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treatment(e.g., incineration, low-temperature thermal stripping, and pyrolysis) (Averett et al., 

1990). Specifically for this study, both biological and chemical oxidation treatment technologies 

were evaluated for incorporation into the proposed process. 

Bioremediation of PAHs 

A wide variety of natural microorganisms have the capacity to degrade PAHs. These 

organisms have been identified to be algae, fungi, and bacteria (Dzombak and Luthy, 1984; 

Heitkamp and Cerniglia, 1988). PAHs canbe degraded under aerobic and anaerobic conditions 

(Zappiet al., 1996; McNally et al., 1998).  However, aerobic degradation has been found to be 

the optimal approach for selected compounds of wood-preserving wastes consisting mainly of 

PAHs (Hurst et al., 1996, McNally et al., 1998).  This is due to the efficient and rapid reaction of 

oxygenases with the PAHs (Heitkamp and Cerniglia, 1988). 

The first step in the degradation of PAHs inserts oxygen molecules into the aromatic 

structure (via oxygenases), resulting in the formation of dihydrodiols (Heitkamp and Cerniglia, 

1988).  Incorporation of oxygen molecules into the aromatic nucleus increases the solubility and 

makes it more biologically appealing.  Further degradation of dihydrodiols results in the production 

of cathechol-like structures and ring cleavage products. 

Light PAHs (i.e., two- and three-ring) are relatively easy to degrade (Bauer and Capone, 

1985;Karimi-Lotfabadetal., 1996).  These PAHs should disappear before the Heavy PAHs (i.e., 

> four-ring) are removed during bioremediation. In addition, it has been proventhat Light PAHs 

can be mineralized (Bauer and Capone, 1985; McNally et al., 1998).  Unlike Light PAHs, Heavy 
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PAHs are known to resist bioenzymatic attack.  Nevertheless, Heavy PAHs have beenshown to 

biodegrade through the process of co-metabolism (Kazunga et al., 2001).  Co-metabolism of 

Heavy PAHs occurs when other more biodegradable co-metabolites are degraded as primary 

carbonsources to provide energy for a further biosynthesis, while producing non-specific enzymes 

that may attack the PAHs.  Co-metabolite is an external carbon substrate (e.g., glucose) added 

to enhance the biodegradation of recalcitrant organics (i.e., PAHs). Additionally, the product of 

bio-emulsifiers improves PAH removal (Kanga et al., 1997). 

Naturally occurring microorganisms are usually present in sufficient amounts within soil to 

achieve the required bioreactions for mineralization of the desired compounds (i.e., PAHs) (Jing, 

1998).  However, environmental factors such as nutrients, temperature, and pH are known to 

affect the ability of these microorganisms to degrade PAHs within soil.  Therefore, in order to 

increase and optimize biodegradation rates, it is necessary to understand how the environmental 

factors affect PAH biodegradationwithinthe targetedmatrix.  Thus, environmental factors affecting 

biodegradation in soil are discussed in the following section; followed by case studies on the 

biodegradation of PAHs. 

Factors Affecting Biodegradation 

Microorganisms: A considerable population of microbes capable of degrading the targeted 

compound(s) must be present before significant bioremediation can be initiated. Most native 

bacteria that are found within contaminated soil and sediment are usually found in a semi-dormant 

state; thus,theycanbestimulatedthrough the additionofelectronacceptors and/or nutrients (Zappi 
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et al., 1991; Wang, 1999). The microbialpopulationcanalso be increased by introducing exotic 

microorganisms to the contaminated site.  The introduction of microorganisms into a different 

environment is called bioaugmentation or simply inoculation (Jing, 1998). During the acclimation 

period, there is usually a competition between the native and the seeded microorganisms for 

nutritional resources. Thus, exotic microorganisms are usually added inanoverwhelming amount 

to ensure survival. 

Electron Acceptors:  Dissolved oxygen is used as the terminal electron acceptor during 

aerobic respiration and it has been identified to be the rate-limiting variable during aerobic 

degradationof hydrocarbons (i.e., PAHs) within soil (Dibble and Bartha, 1979).  Thus, to warrant 

successful PAHs degradation during bioremediation, dissolved oxygen should be maintained at 

levels greater than 2 mg/l to maintain healthy aerobic conditions (Fan and Tafuri, 1994).  The 

requirement is critical because oxygenases are the key enzymes used in the biodegradation of 

PAHs (Heitkamp and Cerniglia, 1988). 

Carbon Sources: Carbon sources can be divided into two categories; organic and 

inorganic.  Bacteria that have the ability to use organic compounds, such as PAHs, as their carbon 

sources are called heterotrophs (Rittmann and McCarty, 2001). On the other hand, bacteria that 

utilize inorganic carbons, such as carbon dioxide, as their carbon sources are called autotrophs. 

Bacteria utilize carbon to sustain their metabolic functions, which include cell maintenance 

and reproduction.  It is known that a carbon source must be in the dissolved state before 

appreciable biodegradation rates can be observed (Wodzinski and Coyle, 1974; Mihelcic and 
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Luthy, 1991; Guerin and Boyd, 1992; Wang, 1999).  Unfortunately, organic carbon sources, such 

as Heavy PAHs, have low solubilities in water. The low solubility and highhydrophobicityof the 

PAHs make them less susceptible to bacterial attack.  The ease of the accessibility of PAH to 

bacteria is called bioavailability. Bioavailability controls the rate of degradation by the means of 

physical limitations associated with poor mass transfer conditions (i.e., adsorption).  Adsorption 

of a PAH occurs when PAH adheres to naturally occurring organic matter on the surface of the 

soil particle and/or mineralsurfaces.  However, the dominant sorption mechanism is the affinity of 

a PAH for natural organic matter (LaGrega et al., 1994).  The sorption process is reversible 

(desorption), but this step is usually limited especially insoil withelevated amount ofnaturalorganic 

matter (LaGrega et al., 1994).  Fortunately, the bioavailability of a PAH can be enhanced by 

adding surfactants (e.g., Tween 80) which acts as a solubilizing agent (Volkering et al., 1998). 

WhenHeavy PAHs are inadequatesupply, theyare not always readily utilizable as carbon 

sources. Alternative supplementary carbon sources, suchas glucose and sodium acetate, can be 

added tosatisfythe carbonsource demands.  The supplementary carbon sources have been shown 

to improve the biodegradation of Heavy PAHs through the process of co-metabolism (Kazunga 

et al., 2001).  As mentioned earlier, high carbon loadings may also induce production of bio-

emulsifiers which basically act as natural surfactants. 

Nutrients:Microorganisms are generally made of the elements:carbon, hydrogen, oxygen, 

nitrogen, and phosphorus. It is reported that the chemicalstructure of a typical bacterium can be 

expressed as C60H87O23N12P with minor traces of other elements such as calcium, sodium, 
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magnesium, and iron (Metcalf and Eddy, 1991).  Microbial metabolisms are highly dependent on 

these essential elements which can be categorized into two groups: micronutrients and 

macronutrients (Jing, 1998).  Micronutrients, such as calcium and sodium, are required to support 

bioremediation and are naturally present within the environment in sufficient amounts (Baker and 

Herson, 1994). On the other hand, macronutrients, suchas nitrogen and phosphorus, are usually 

limited in dissolved state; thus, limiting microbial synthesis and growth.  In theory, the amount of 

nitrogenand phosphorus to be added is based on a carbon: nitrogen: phosphorus (C:N:P) weight 

ratio similar to the estimated composition of a bacterium, which is C60N12P or approximately 

100:20:2 (Hoover and Porges, 1952; Metcalf and Eddy, 1991). 

Moisture:  Water is vital to cell growth, distribution of substrates, and the removal of toxic 

waste by-products (Stotzky, 1972; Hoeppel and Hinchee, 1994).  It has been concluded by 

Stotzky (1972) that availability of water is more important to microbes than total water content. 

Availability of water can be expressed as the activity of water (aw): 

a =  P / P  (2.1)w s w 

where: 
Ps = vapor pressure of the solution, torr 
Pw = vapor pressure of pure water at the same temperature as the solution, torr 

Stotzky(1972)concluded that various microorganisms have different acceptable rangesofaw,with 

bacteria requiring a range of 0.93 to 0.99. At a higher aw, it is reported that there is a decrease in 

the length of a lag phase and an increase in the rate of growth. 
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Temperature: Temperature influences the metabolic activity of bacteria.  In other words, 

temperature affects the metabolic rate of biodegradation. Normally, both metabolic activity and 

biodegradation rates diminish in response to a temperature drop (Burchell, 1996). At low 

temperatures, the activityofenzymes that are responsible for degrading carbonsources to provide 

energy is reduced; thus, slower biodegradationrates are usually observed.  Since it is established 

that temperature plays a vitalrole inbiodegradation, reports showed that the optimum temperature 

range for aerobic degradationofhydrocarbons (e.g., PAHs) using most native soil bacteria occurs 

between 20oC and 30oC (Atlas, 1981; Song et al., 1990; Jing, 1998). 

pH: Cell functions and inter-membrane transport are strongly influenced by pH (Jing, 

1998). pH also influences the solubilityofnutrients that are vitalto cellular growth.  It is accepted 

that an increase in pH causes precipitation of some essential ions, such as iron, calcium, and 

sodium, which are essential to the biodegradation of PAHs.  Since, extreme pH values are not 

favorable for PAH biodegradation, thus it is suggested that the optimum pH for bioremediationlies 

between 6.5 and 7.5 (Metcalf and Eddy; 1991; Englert et al., 1993; Wang, 1999). 

Sediment properties: The chemical and physical properties of a sediment that affect the 

interactionbetweensediment and contaminants include the type and amount ofclay, naturalorganic 

matter (NOM), pH and the metals (i.e., iron and manganese) present within the sediment.  These 

properties most impact bioremediation strategies by adversely impacting contaminant desorption 

and amendment addition (Bajpai et al., 1994). 
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Case Studies 

The USEPA (1993) presented two case studies involving bioremediation of creosote 

contaminated soil and petroleum contaminated waste sludge (both of which contained PAHs). In 

the first case study, five 64-L stainless steelbioreactors were used to assess the bioremediationof 

creosote contaminated soil.  The soil contained a significant amount of PAHs. The Light and 

Heavy PAHs were reported to be 1,490 mg/kg and 960 mg/kg, respectively.  The bioslurry 

reactors were aerated and mixed.  In order to increase the population density of the microbes, a 

concentrated culture of indigenous bacteria (Pseudomonas stutzeri, Pseudomonas fluorescens, 

and Pseudomonas stuzeri strain FLN-1) was inoculated and sufficient nutrients were added to 

promote growth.  Results of the pilot study showed that Total PAHs removals were up to 87% 

within 12 weeks.  The degradations of the Light and Heavy PAHs were 98% and 72%, 

respectively. 

In the second case study, a 1-million gallon concrete clarifier was reconfigured into a 

bioreactor to assess the bioremediationofa waste petroleum sludge.  The waste petroleum sludge 

contained totalpetroleumhydrocarbons (TPHs),volatile organics(e.g.,benzene, toluene, ethylene, 

xylene (BTEX), and styrene), and and PAHs. The sludge was constantly mixed and aerated with 

float-mounted mixers and aerators.  The batch bioslurry reactor was inoculated with a mixed 

culture of hydrocarbon degraders and nutrients were added according to the C:N:P ratio of 

100:5:1 to promote growth. Results showed that the removal rates of BTEX and styrene were 

reduced to belowdetectable limitswithin one dayand itwas reported that most of the loss was due 

to volatilization.  In addition, the batch treatment achieved a 50% removal of TPHs in 80 - 90 days; 
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meanwhile, Total PAH removal was 90 % within 56 days.  Reported concentrations for the Light 

and Heavy PAHs were 119 mg/kg and 47 mg/kg, respectively.  Their respective degradations 

were 92% and 87%. 

Lauchet al. (1992) used 64-Lcontinuously-stirred,tank-bioslurryreactors to evaluate the 

bioremediation of PAHs from creosote contaminated soil. The soil contained significant amounts 

of volatile compounds (2-butanone, benzene, toluene, ethylbenzene, styrene, and xylenes) and 

semi-volatiles (naphthalene, fluorene, pyrene, chrysene, and benzo[a]pyrene).  The slurry reactors 

were inoculated with the organisms from Genus Pseudomonas, aerated, mixed, and nutrients 

added using a carbon: nitrogen: phosphorus (C:N:P) ratio of 100:10:1 to promote microbial 

growth.  Results of pilot studies showed that 90% of the Total PAHs were removed within 14 

days. The biodegradation of the Light and Heavy PAHs were 96% and 83%, respectively. 

Zappi et al. (1996) presented a case study where bioslurry reactors were used to assess 

the bioremediation of a total petroleum hydrocarbon(TPH) contaminated soil.  The soil contained 

small amounts ofTPHs, volatile organic carbons (i.e.,benzene, toluene,ethyl benzene and xylenes-

BTEX compounds), and PAHs.  The bioslurry reactors were aerated, mixed, and sufficient 

nutrients were added to promote growth of the native soil microbes.  Results of the pilot study 

showed that 98 % of the BTEX compounds were degraded within 2 days and 82 % of the TPHs 

were degraded within 22 days.  The observed degradation of the 2-ring, 3-ring, and 4-ring PAHs 

were 96%, 75%, and 41%, respectively, whichwas achieved within 22 days.  No biodegradation 

was observed for the 5 and 6 ring PAHs.  On about Day 50 of biotreatment, co-metabolites (e.g., 

sodium acetate and phenanthrene) and surfactant (e.g., Tween 80) were added to the bioslurry 
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reactors to enhance the bioremediation of the 5 and 6 ring PAHs. Results showed that both co-

metabolites and Tween 80 addition did not enhance the biodegradation of the 5-ring and 6-ring 

PAHs.  The authors suggested that the poor removal rates of the 5 and 6 ring PAHs at low 

concentrations were attributed to the limited desorption of the PAHs from the soil and also the 

absence of suitable microorganisms.  It was concluded that the results of the pilot study 

demonstrated the ability of bioslurry systems to bioremediate soils containing TPHs, VOCs, and 

PAHs with four or less aromatic rings. 

Banerji et al. (1995) conducted two bench- and pilot-scale case studies where slurry-

phase bioreactors were used to remediate totalpetroleumhydrocarbon(TPH) contaminated soils. 

The soils contained TPHs, VOCs, and PAHs.  During the bench-scale study, ten 5-L capacity 

bioreactors were used to assess the bioremediationofPAHs.  All the bioslurry experiments were 

conducted in duplicate with the reactors being aerated, mixed, and maintained at 25oC.  The test 

conditions evaluated were a biotic control, abiotic control (i.e., HgCl2 dosed), bioaugmentation, 

surfactant addition, and combinationofbioaugmentationand surfactant addition.  Sufficient nutrients 

were added to the bioslurryreactors with microbial activity to promote microbial growth.  Results 

from the bench-scale study showed that a high degree of BTEX and TPH removal was believed 

to be due to volatilization.  Despite the significant BTEX and TPH losses due to volatilization, a high 

PAHremovalwas reported (attributed to biodegradation).  However, the addition of the surfactant 

and bacteria capable of utilizing specific PAH compounds did not improve PAH degradation. 

During the pilot-scale study, 60-L continuously-stirred, tank-slurry reactors were used to assess 

the bioremediationofPAHs.  The bioslurry reactors were aerated, mixed, and sufficient nutrients 
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were added to promote microbial growth.  In this system, a novel gas recirculation system was 

employed to keep all volatile pollutants within the system until they were biodegraded.  Results of 

the pilot study showed that TPHs, volatile organics (e.g., benzene, toluene, ethylbenzene, and 

xylene),and PAHs removalwere significant withmost of the concentrations belowdetectable limits 

within 48 days.  TPHs removal were about 91%, with the volatile organics removed to below 

detectionlimits.  Total PAHs removals were up to 91% within 48 days. The biodegradation of the 

Light and Heavy PAHs were 93% and 87%, respectively. 

In the second case study by Banerji et al. (1995), a similar bench-scale bioreactor setup 

was utilized.  The conditions were a biotic control, abiotic control, combination of bioaugmentation 

and surfactant at two different levels (i.e., 1.5% and 3% by weight). Results showed that BTEX 

removals were mostly due to volatilization.  In spite of significant BTEX losses due to volatilization, 

significant TPHs and PAHs removals due to biodegradation were observed.  In addition, the 

amending withTween80 at 1.5 % byweight resulted inhigher PAH removalrates.  This trend was 

not observed in the earlier bench-scale study.  The authors stated that the discrepancy could be 

due to the lesser amount of surfactant addition (125 mg/l) compared to this bench-scale study. 

Despite the positive results, the pilot-scale was conducted without the surfactant.  The same pilot-

scale bioslurry reactor setup was used.  Results of this pilot study showed that TPHs, volatile 

organics (e.g., BTEX, methylene chloride, chlorobenzene, acetone, butanone, chloroform, and 

hexanone), and PAHs removals weresignificant.  TPHs removals were reported to vary from 69% 

to 82% within twenty- seven days.  Volatile organics removals were reported to vary from 50% 

to 97% within six days.  Total PAH removal was reported to be 65% within a five-week period. 
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C h e mi c al O xi d ati o n Pr o c ess es 

P ot e nti a l c h e mi c al o xi d ati o n pr o c ess es of i nt er est t o t his st u d y ar e F e nt o n’s R e a g e nt, 

p er o x o n e, a n d o z o n e.  T h es e o xi di z ers w er e c h os e n b e c a us e t h e y h a v e b e e n s h o w n t o d e gr a d e 

P A Hs wit hi n a q u e o us or s oil s yst e ms ( C or n ell a n d K u o, 1 9 8 4; Tr a pi d o et al., 1 9 9 4; B eltr a n et al., 

1 9 9 6).   I n  or d er  t o  m a xi mi z e  t h e  o xi d ati o n  r at e,  it  is  ess e nti al  t o  u n d erst a n d  t h e  m e c h a nis ms 

ass o ci at e d wit h t he o xi d ati o n of t he P A Hs.   T h us,  t h e  f oll o wi n g  s e cti o n  el a b or at es  o n  t h es e 

c h e mi c al pr o c ess es a n d ass o ci at e d r e a cti o ns wit h P A Hs. 

F e nt o n’s R e a g e nt 

F e nt o n dis c o v er e d t h at b y a d di n g a s ol u bl e ir o n s alt a n d h y dr o g e n p er o xi d e, or g a ni c 

c o m p o u n ds c o ul d e asil y b e o xi di z e d ( W alli n g, 1 9 7 5).  M or e r e c e nt st u di es h a v e s h o w n t h at t h e 

m ai n m e c h a nis m w as t h at t h e h y dr o x yl r a di c al is g e n er at e d w hi c h i n t ur n r e a cts wit h  or g a ni c 

c h e mi c als ( Bi g d a, 1 9 9 5).  T h e r e a cti o ns ass o ci at e d wit h r a di c al f or m ati o n vi a F e nt o n’s R e a g e nt 

ar e d es cri b e d as f oll o ws: 

2 + . - 3 +H 2 O 2 +  F e ®  O H + O H + F e  ( 2. 2) 

2 + . 3+ -F e + O H ® F e + O H  ( 2. 3) 

wit h t h e o v er all st oi c hi o m etr y b ei n g: 

2 + + 3 +2 F e + H 2 O 2 + 2 H = 2 F e + 2 H 2 O  ( 2. 4) 

T h e r es ulti n g o xi d ati o n r e a cti o n st e p wit h or g a ni c s u bstr at es: 

. .R H + ®  R 2  ( 2. 5)O H +  H O 
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where: 
R is an organic substrate 

According to the mechanismpathways,radicalgenerationbegins whenaferrous ion, acting 

as catalyst, comes in contact with hydrogen peroxide.  Ferrous ions split the hydrogen peroxide 

into a hydroxyl ionand hydroxyl radical. In the absence oforganic substrates, suchas the targeted 

contaminants, free radical oxidizes another molecule of a ferrous ion to a ferric ion.  Fenton’s 

Reagent has been found to be effective in oxidizing organic compounds, such as BTEX, 

formaldehyde, ethylenediamine, pesticides, gasoline and diesel range organics, PCPs, PCE, and 

PAHs (Kelleyet al., 1991; Leung et al., 1992; Kemenade et al., 1995, Schulte etal.,1995;Wang, 

1999).  Kawahara et al. (1995) also utilized Fenton’s Reagent to oxidize PAHs within the 

contaminated soil.  It was reported that the extractability for most of the PAHs was increased after 

anhour of treatment.  The authors conclude that the increase was due to the oxidation of the humic 

sorptive bonds, which released the PAHs into the aqueous phase.  They conclude that 72% and 

93% of naphthalene and acenaphthylene were removed, respectively. 

Ozone 

As mentioned inChapter I, ozone has the abilitytooxidize a varietyoforganic compounds. 

The oxidation of any compound by ozone is called ozonation. Figure 2.1 illustrates the reaction 

scheme for the ozonation of organic chemicals.  Ozonation of organic compounds generally 

involves two mechanisms: direct oxidation and radical oxidation.  From Figure 2.1, when ozone 

is sparged into an aqueous system, it either oxidizes the organic contaminants directly and/or 

decomposes into hydroxyl radicals, whichthenoxidize the pollutant into an oxidation by-product. 
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It h as b e e n r e p ort e d t h at t he d e c o m p ositi o n r at e of o z o n e c a n b e str o n gl y d e p e n d e nt o n t h e p H 

of t he s ol uti o n ( Qi u, 1 9 9 9).  At n e utr al t o hi g h p H, o z o n e d e c o m p os es i nt o h y dr o x yl r a di c als 

t hr o u g h t h e f oll o wi n g i niti ati o n st e ps: 

O 3 +  O H- ®  H O2 
. +  O2

. - ( 2. 6) 

O 3 + H 2 O ®  H O3 
+ +  O H- ( 2. 7) 

A b o v e i niti al st e ps s u g g est t h at o xi d ati o n r at es b y o z o n e wit hi n al k ali n e m e di a ar e s e v er al 

or d ers of m a g nit u d e gr e at er t h a n t h os e i n a ci di c m e di a ( H u a n g et al., 1 9 9 3).  A c c or di n g t o t h e 

i niti al st e ps, h y dr o x yl r a di c al is t he m aj or o xi d ati o n s p e ci es.  D u e t o its hi g h o xi d ati v e p ot e nti al, ( Eo 

= 2. 3 3 v), h y dr o x yl r a di c al r e a cts m or e r a pi dl y wit h or g a ni c s u bstr at es t h a n m ol e c ul ar o z o n e ( Eo 

= 2. 0 8 v). 

O z o n e  h as  b e e n  s u g g est e d  t o  b e  a n  e x c ell e nt  c h e mi c al  o xi d a nt  f or  d e gr a di n g  P A Hs 

b e c a us e of b ot h c ost a n d d e gr e e of eff e cti v e n ess ( B ail e y, 1 9 8 2; C or n ell a n d K u o, 1 9 8 4; Tr a pi d o 

et al., 1 9 9 4; B eltr a n et al., 1 9 9 5).  R e c e nt st u di es of o z o n ati o n o n 3-ri n g P A Hs h a v e s h o w n t h at 

fl u or e n e s e e ms t o b e d e gr a d e d d u e t o b ot h dir e ct a n d h y dr o x yl r a di c alm e c h a nis ms, w hile o xi d ati o n 

of p h e n a nt hr e n e a n d a c e n a p ht h e n e ar e d u e t o dir e ct m e c h a nis ms ( B eltr a n et al., 1 9 9 5).  C o m m o n 

b y- pr o d u cts of P A Hs ar e p ol ar alip h ati c c o m p o u n ds, mai nl y c ar b o x yli c a ci ds a n d al d e h y d es 

( H ell e ur et al., 1 9 7 9; L e g u b e et   al.,  1 9 8 6).  B ot h  c ar b o x yli c  a ci ds  a n d  al d e h y d es  ar e  e asil y 

bi o d e gr a d e d ( W a n g 1 9 9 9). 
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P er o x o n e 

C o m bi n ati o n of o z o n e a n d h y dr o g e n p er o xi d e as a tr e at m e nt pr o c ess is t er m e d p er o x o n e. 

It h as b e e n r e p ort e d t h at h y dr o g e n p er o xi d e c a n i niti at e t h e f or m ati o n of h y dr o x yl r a di c als b y 

d e c o m p osi n g o z o n e via a si n gl e el e ctr o n tr a nsf er ( H u a n g et al., 1 9 9 3; W a n g, 1 9 9 9).  T he i nitiati n g 

-s p e ci es is t h e h y dr o p er o xi d e i o n, H O 2 .  It is f or m e d vi a t h e diss o ci ati o n of h y dr o g e n p er o xi d e 

wit hi n a q u e o us m e di a as f oll o ws. 

H  O +  2 H O «  2 H O - +  4 H+  ( 2. 8)2 2 2 2 

-As s h o w n b el o w, t h e h y dr o p er o xi d e i o n t h e n r e a cts wit h o z o n e t o g e n er at e t he o z o ni d e i o n, O3 

a n d HO 2 . 

H O - + O ® O 3 
- + H O  ( 2. 9)2 3 2 

T h e tr a nsiti o n al pr o d u cts w o ul d f urt h er i niti at e O H . f or m ati o n t hr o u g h t h e f oll o wi n g st e ps: 

+ +H O 2 « H  O 2 
- ( 2. 1 0) 

O +  O ®  O +  O  ( 2. 1 1)2  3 3 2 

O - +  H+ ®  H O  ( 2. 1 2)
3 3 

.H O 3 ®  O H + O 2  ( 2. 1 3) 

P er o x o n e tr e at m e nt w as f o u n d b e eff e cti v e f or t etr a c hl or o et h yl e n e, p esti ci d es, e x pl osi v es, 

a n d P A Hs ( Gl a z e a n d K a n g, 1 9 8 9; All e m a n c e, 1 9 9 4; Tr a pi d o et al., 1 9 9 4; Z a p pi et al., 1 9 9 5; 

B eltr a n et al., 1 9 9 6). 
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Chemical Oxidation Enhanced Bioremediation 

Hydrophobic contaminants are known to adsorb onto the surface of soils (Dzombak and 

Luthy, 1984; Pignatello, 1989).  Adsorption is known to hinder the ability of biotreatment to 

remediatepolluted soils (Dzombak and Luthy, 1984).  Since PAHs are hydrophobic contaminants, 

theystronglyadsorb onto the surface of the soil whichleads to limitedbioavailability; thus,hindering 

biodegradation.  The desorption of PAHs from the soil has been identified to control the fate of the 

biodegradation(Pignatello, 1989).  It has been demonstrated that the addition of strong chemical 

oxidizers increases the desorptionmechanismofcontaminants fromsoil; thus,potentially increasing 

biodegradation of PAHs in soil (Kawahara et al., 1995). 

A strong chemical oxidizer, such as ozone, has been determined to posses the capability 

to improve the bioavailability of a PAH in the aqueous phase, which is a known limitation 

associated with bioremediation, via the destabilizationand oxidationofNOM (Chandrakanth and 

Amy, 1996).  Note that the details of the proposed impact of ozonation on enhancing the 

degradation of PAHs are discussed in Chapter III.  Research has shown that soils containing 

elevated amount ofnaturalorganic mattershowgreater adsorptioncapacities for PAHs (Dzombak 

and Luthy, 1984).  This organic matter also has been observed to easily react with chemical 

oxidizers (Yuteri and Gurol, 1991; Zappi et al., 2000).  The reaction may cause a significant 

problemduring the oxidationofcontaminatedsedimentscontainingelevatedamounts of the organic 

matter. Inadditionto the presence oforganic matter, reaction of chemical oxidizers with reduced 

cations whichare generally present insediments also has been observed (Yuteri and Gurol, 1991; 
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Zappiet al., 2000).  Similar to naturally occurring organic matter, the presence of reduced cations 

at elevated levels mayalso cause scavenging resultinginreducedPAHdegradation.  Chandrakanth 

and Amy (1996) found manganese and iron both reacted withozone during ozonation of NOM-

coated particles in the aqueous phase.  Similar observations were also made by Zappi et al. (2000) 

during the enhancement of bioremediation utilizing hydrogen peroxide as an oxygen source.  The 

authors concluded that the Ferrous ion was one of the primary constituents scavenging the 

hydrogen peroxide. 

Kelley et al. (1991) experimented with Fenton’s Reagent as a pretreatment step prior to 

biologicaldegradationofPAHs within contaminated soil.  Degradation of PAHs utilizing Fenton’s 

Reagent was found best to occur under acidic conditions (pH~4.0). Results showed that almost 

99% of the PAHs were removed from both the aqueous and soil phases.  They found after the 

Fenton’s Reagent treatment, 25% of the PAH was recovered as carbon dioxide, 50% as an 

oxidized non-polar compounds, and 12% as oxidized polar (water-phase) compounds. 

Brown et al. (1995) conducted a bioslurry study to remediate PAHs contaminated soil. 

Two 60-liter bioslurry reactors and a 10-liter bioslurry reactor were used in sequence.  The first 

60-liter bioslurry reactor was a pre-biotreament step, where fresh salicylate and succinate were 

added as co-metabolites to enhance the bioremediationof the Heavy PAHs.  Then the slurry from 

the first reactor was fed to the second 10-liter unit, where Fenton’s Reagent was added to oxidize 

the recalcitrant Heavy PAHs. After the Fenton’s Reagent treatment step, the slurry was fed into 

the second 60-liter bioslurry reactor where biological activities in the slurry were reestablished to 
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biodegrade the remaining contaminants.  The three bioreactors connected in series system 

demonstrated anaverage TotalPAHs removalof95%(84% of the carcinogenic PAHs removed). 

Wang (1999) successfully integrated bioremediationand chemicaloxidation technologies 

for the removalof the heavy petroleum fraction(motoroil) and light petroleum fraction(dieselfuels) 

contaminated soils. This studywas separated into three phases: 1st stage biotreatment / 2nd stage 

chemical oxidation / 3rd stage bioremediation.  The first stage of biotreatment was conducted with 

the intention of eliminating the lighter petroleum fraction, followed by the introduction ofchemical 

oxidizers, such as Fenton’s Reagent, ozone, and peroxone.  Followed by the addition of the 

chemicaloxidizers during the 2nd stage chemical oxidation step to enhance the removalrate of the 

heavy petroleum fraction through the oxidation of the carbon sorption bonds, which bind the 

petroleum fractions to the soil phase and limit bioavailability.  In addition, the chemical oxidizers 

were also used for the cleavage of the heavy petroleum fraction into more biodegradable and 

soluble by-products.  Finally, the 3rd stage of biotreatment served as a polishing step, where 

biological activities were reestablished by adding nutrients and activated sludge. In the last stage 

ofbiotreatment, the intent was to further biodegrade the remaining petroleum fractionincluding the 

oxidation of the by-products.  The integration of bioremediation and chemical oxidation was 

successful inenhancing the removalofboththe light and heavy petroleum fractions within soils.  The 

author reported that the slurry that was treated with biological methods alone achieved 42% and 

50% removals of the light and heavy petroleum fractions in soils.  On the other hand, the chemical 

primed slurries achieved an average of 85% and 90% removals of light and heavy petroleum 

fractions in the soils. 
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Kemenade et al. (1995) used ozone as a pre-treatment step to enhance biodegradation 

of phenanthrene. Biotic controls that were not subjected to chemical pre-treatment had removal 

rates ranging from 0 to 8.6%.  However, results showed that after 24 hours pre-treatment using 

5 g/l of applied ozone, followed by 5 days of bioremediation, the degradation of phenanthrene 

within the soil was enhanced by 115% over the controls. 
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Figure 2.1. Reaction Scheme for Ozone Addition to an Aqueous Solution (Hoigne and 
Bader, 1975) 



www.manaraa.com

      

   

   

         

            

     

         

         

  

   

CHAPTER III 

RESEARCH HYPOTHESIS AND OBJECTIVES 

Research Hypothesis 

The combinationofbothbioremediationand chemical oxidation technologies is promising 

for enhancing the degradation of PAHs within soils and sediments. Thus, it is hypothesized that 

the integration of both chemical oxidation and bioremediation technologies into a single-step 

treatment strategy could result in the development of an aggressive treatment process that is far 

superior to the use of either process as stand-alone systems. 

Figure 3.1 illustrates the mechanismofozonationinenhancingthe biodegradationofpyrene 

within the sediment. The low bioavailability of pyrene in sediment has always been attributed to 

the limited desorptionof the pyrene into the aqueous phases.  The introduction of ozone molecules 

into the systemis expected to enhance the desorption through the oxidationof the adsorptionlink; 

thus, increasing bioavailability.  At the same time, ozone is expected to improve the biodegradability 

of the pyrene molecules via the oxidation of pyrene into a more biodegradable by-product. This 

is further illustrated in Figure 3.2, where it can be seen that the presence of the carboxylic groups 

suggests that the by-product should be more biologically appealing, which leads to the improved 

removal of pyrene over that achieved with biodegradation alone. 

32 
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Research Objectives 

The primary objective of this research is to evaluate the integration of a chemical priming 

step  (via chemical oxidizers) withbioremediationto forma noveltreatment process to be used for 

the remediation of PAH contaminated sediments.  Since all of the past efforts were done using 

surface soils that contain comparatively little reduced chemical species and naturalorganic matter 

(NOM), it is of interest to challenge this concept using sediments which are highly reduced and 

contain much more NOM. The development of this new treatment process may result in a new 

and innovative process that mayeliminate problems associated with the treatment of PAHs within 

soils and sediments using current technology. 

The specific objectives of this study were the following: 

1. Formulate enhancement strategies to optimize the biotreatment of PAHs in sediment by 
utilizing nutrients, surfactant, co-metabolites, and exotic microorganisms 

2. Evaluate various dosing strategies for chemicaloxidationfor use as a chemicalprimingstep 

3. Investigate the feasibility of the combined bioremediation and chemical priming to treat a 
PAH contaminated sediment within 5-L bioslurry reactors, which mimic actual full-scale 
reactor units. 
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Figure 3.1. Potential Impacts of Ozonation on Enhancing the Bioremediation of a Pyrene 
                   Contaminated Sediment 
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Figure 3.2. Proposed Decomposition Reaction Pathway of Pyrene via Chemical 
Oxidation 
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CHAPTER IV 

METHODS AND MATERIALS 

This study is composed of two experimental phases.  Phase I involved shake-flask 

experiments, while Phase II involvedbio-slurryreactorexperiments.  Phase I served as a screening 

phase to optimize test conditions for both bio- and chemical-oxidation degradation of the PAHs. 

Once optimalconditions were established, these conditions were implementedinPhaseII involving 

5-L bioslurry reactors. 

Materials 

Sediments 

Two sediments were used in this study.  The first sediment was collected from Lake 

Superior by the U.S. Army Engineer Waterways Experiment Station (WES) in Vicksburg, 

Mississippi.  Dr. Elizabeth Fleming, of the WES, provided this sediment to Mississippi State 

University (MSU) as a partnering effort between the two research entities. Lake Superior 

Sediment was transported to MSU from WES in four 25-gallon plastic buckets.  Foreign debris 

and large stones were hand picked and removed fromthe sediment sample.  The second sediment 

was collected from the Scioto River by personnel from the University of Akron.  Scioto River 

sediment was shipped within ten 1-liter plastic bottles to MSU  in three ice chests filled with Blue 

36 
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IceTM. Again, foreign debris (i.e., leaves, plastics) was removed from the sediment sample.  The 

main difference betweenthe Lake Superior and Scioto River sediments is the amount of the PAHs 

present. The amount of PAHs present within the Lake Superior sediment is at least a magnitude 

higher thanthe Scioto River sediment.  A summary of the detected PAHs and other selected results 

for both sediments are listed in Table 4.1.  A summary of which sediments were utilized in the 

various experiments conducted during this study is presented in Table 4.2. 

Nutrients 

During the biotreatment stages of this study, ammonium nitrate (NH4NO3), ammonium 

hydrogen phosphate ((NH4)2HPO4), potassium nitrate (KNO3), and potassium phosphate 

(K3PO4) were utilized as nitrogen and phosphorus sources.  They were purchased from Fisher 

Scientific.  These compounds easily dissolve in water and are used by microorganisms as 

macronutrients (Dibble and Bartha, 1979; Harris and Arnold, 1995; Wang, 1999). 

Surfactant 

Tween 80 (polyoxyethlene sorbitan ester) was used during some of the biotreatment 

experiments to assess the benefits of surfactant dosing towards enhancing the bioavailability of 

PAHs in the sediments. Tween 80 is a nonionic, nontoxic, and biodegradable surfactant. It was 

purchased from Fisher Scientific. The chemical formula for Tween 80 is C64H124O26. 

Co-Metabolites 

Naphthalene, sodium acetate, and glucose were added as co-metabolites to selected 
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bioreactor systems.  These chemicals were all purchased from Fisher Scientific. The chemical 

formulas for naphthalene, sodium acetate, and glucose are C10H8, NaC2H3O2, and C6H12O6, 

respectively. 

Ferrous Sulfate 

Ferrous sulfate was used as a catalyst for hydroxyl radical formation during Fenton’s 

Reagent application. It was purchased fromFisher Scientific.  Ferrous sulfate is a soluble reagent 

making it an excellent choice for an iron salt for use in soil remediation.  The chemical formula for 

ferrous sulfate is FeSO4.7H2O. 

Hydrogen Peroxide 

HydrogenperoxidewasaddedwhenapplyingFenton’s Reagent and peroxone.  Hydrogen 

peroxide stock solutions of 3% and 30% by weight were purchased from Fisher Scientific.  The 

chemical formula for hydrogen peroxide is H2O2. 

Bioslurry Reactors 

Eight 5-L bioslurryreactors were used during Phase II of this study.  These reactors were 

constructed of glass and mounted in steel support frames.  A schematic of a bioslurry reactor is 

shown in Figure 4.1.  A photograph of the complete system (including steel support frames) is 

shown as Figure 4.2. Three built-in sparging points were located at the bottomof the reactors for 

supplying air to the slurries. Six outlets located on the top of the reactor for used for venting off-

gases, inserting probes, and extension of the mixing shaft into the slurry.  The reactors were 
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purchased from NDS Technologies Inc, New Jersey.  A 1/15 horsepower Lightnin LabMasterTM 

Mixer (Model L1U10) with digital readout was mounted on each reactor. 

Ozone 

Ozone was generated using a laboratory scale ozone generator (Model LC-1234) 

manufactured by Ozonology Inc. (Evanston, Illinois).  The generator has a built-in Airsep 

Corporation Model AS-12 oxygen generator with the capacity of producing 90% +/- 5% pure 

oxygenup to 24 standard cubic feet per hour (scfh).  Ozone is generated when high purity oxygen 

is passed through an electrically-charged corona discharge tube which is comprised of a steel 

electrode inside aborosilicate glass dielectric withcopper jacketing.  The generator was equipped 

with four independent corona cells.  Ozone produced within the four cells are independently 

controlled by a primary single voltage autotransformer (supplies up to 10.5KV). The gas flow 

through each cell was controlled by a rotameter with volumetric metering capacity.  The ozone 

output of this generator is capable of reaching air-phase ozone concentrations as high as 5% (w/w) 

ozone.  Figure 4.3 shows a graph of ozone concentration versus flowrate at 100% voltage setting. 

This chart was used for setting the ozone generator to the required ozone inlet gas composition. 

The actual ozone gas phase concentration is monitored using an ozone gas monitor.  Once the 

desired ozone gas phase concentration is achieved (3% by weight), the voltage setting and the 

oxygen volumetric flowrate were recorded. 



www.manaraa.com

       

           

          

    

       

                 

        

 

   

   

       

   

 

     

40 

Methods 

Phase I: Biotreatment Screening Experiments 

Allof the shake-flask experiments were performed using anorbitalagitationtable (Model 

M49235, Barnstead/Thermalyne, Bubuque, IA) set at 250 rounds per minute (rpm). All the 

biotreatment experiments were conducted in500mlErlenmeyer flasks at roomtemperature.  Note 

that all of the shake flasks were capped withporous foamstoppers to allowair into the flasks, but 

prevent splashing from flask to flask. All slurries were made by mixing wet sediment and distilled 

water to forma 30% by weight slurry.  The moisture content of the wet sediment was determined 

prior to the addition.  The amount ofwet sediment required to make the 30% (wt drysoil/ totalwt) 

slurries was added based on the water content of the sediment. 

Biotreatment Screening Shake-Flask Experiments 

Optimal bioremediation conditions were not known for both Lake Superior and Scioto 

River sediments.  Thus, test conditions in this study phase were formulated to test for variables that 

would optimize PAH biodegradation.  The effects of nutrients, bacterial seeding, and surfactant on 

the biodegradation of PAHs were examined.  The experiments were conducted in duplicate.  A 

summary of the bio-treatment conditions is shown in Tables 4.3 and 4.4.  The duration of these 

experiments was 4 weeks.  Three types of bacterial inocula were utilized in these experiments; 

activated sludge from the return line of a local wastewater treatment plant ( approximately 5,500 

mg/ volatile suspended solid), activated sludge from the return line of a swine waste treatment 

project conducted at MSU (approximately 3,000 mg/s volatile suspended solid), and a culture of 
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multi-ring PAH degraders produced by Dr. Hamid Borazjani of the Department of Forest 

Products, MSU.  The activated sludge from the wastewater treatment plant and the swine project 

were seeded on the 1st day of the experiment using a liquid volume 10 mland 30 ml, respectively. 

The mixture ofmulti-ring PAH degraders was inoculated using of seed volume 40 mlonce a week 

over the entire study period.  The actual number of bacteria present in this inoculum was not 

known.  Lake Superior sediment samples were collected once a week for PAH analysis only; 

meanwhile, the Scioto River sediment samples were sampled once a week for PAH and pH 

analyses. 

Bioavailability Experiments 

The sediment utilized for this set of experiments was the Lake Superior sediment.  This test 

was formulated to examine the biodegradation of naphthalene in both the aqueous and soil slurry 

matrices.  The bioavailability experiments were conducted to verify that the limiting factor in the 

biodegradationofnaphthalene was indeed bioavailabilityand not bacterialenzyme limitations.  The 

duration of these experiments was three days.  These experiments were conducted in duplicate 1 

liter glass bottles. The microbial inoculum utilized in this set of experiments was prepared by Dr. 

Lewis Brown, MSU.  A summary of the treatment conditions used with these experiments is shown 

inTable 4.5.  In the first condition, 25 mg/l naphthalene was added to 250 ml of the concentrated 

microbial inoculum.  In the second condition, 31.25 gram of dry sediment that contained 

approximately 284.73 mg/kg of naphthalene was added to 250 ml of the concentrated microbial 

inoculum. Samples for both the liquid and soil phases were taken at 0, 1.6, and 70.1 hours and 
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5 ml of 10% hydrochloric acid added to every sample to stop microbial activity that would result 

in further naphthalene biodegradationprior to analysis.  The slurry samples for the second condition 

were centrifuged at 3,000 rpm for 30 minutes.  Both the equilibrated liquid and sediment samples 

from these tests were analyzed for naphthalene content. 

Phase I: Chemical Oxidation Screening Experiments 

The purpose of the chemical oxidation experiments was to evaluate the effectiveness of 

various chemical processes, such as Fenton’s Reagent, ozone, and peroxone, on the oxidation of 

PAHs in the sediments. 

Ozonation and Peroxone Experiments 

Ozonationand peroxone treatments of the Lake Superior sediment wereconductedin2-L 

Erlenmeyer flasks.  This set of experiments was designed to examine the efficacy of ozone and 

peroxone in treating PAHs within the sediment slurries.  Mixing was achieved using Fisher Thermix 

Model 120 S stirrer. The experiments were conducted in duplicate. Figure 4.4 shows the setup 

for both the ozone and peroxone experiments.  Ozone was diffused into the reactors at 2.5 scfh 

at 100% voltage generator setting through air-stones yielding a gas phase ozone concentration of 

3% by weight ozone.  The gases exiting via the off-gas outlet from the flask was directed into a 

glass container containing Carulite, a catalyst that decomposes ozone into oxygen via catalytic 

reaction. A 5-L foam trap was installed in between the slurry reactor and Carulite to trap foam 

that might interfere with the ozone destruction clogging or coating of the catalyst. 

A summaryof the ozone and peroxone experiments performed are listed in Table 4.6.  A 
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summary of the hydrogen peroxide dosing sequence used withthe peroxone experiments is listed 

in Table 4.7. PAH samples for the ozone experiments were collected after 2 hours of oxidation. 

The PAH samples for the peroxone experiments were sampled prior to each hydrogen peroxide 

dosing. 

Fate of Hydrogen Peroxide in Equilibrated Water Solutions 

This test was designed to examine the reactivityofhydrogenperoxideinthe aqueous phase 

due to biotic and abiotic reactions associated with sediment components present in equilibrated 

water samples.  The Lake Superior sediment was utilized in this experiment. The equilibrated 

water samples were prepared bymixing75 grams ofsediment (ona dryweight basis) and 175 ml 

ofDI water ina 500 mlErlenmeyer flask to make a 30% byweight slurry.  The slurry was allowed 

to shake on the orbital agitation table (described earlier) for at least 48 hours to allow indigenous 

microorganisms and other soluble materials (i.e., dissolved and reduced cations, and NOM) to 

desorb fromthe surface of the soil particles into the liquid phase.  Next, the slurry was centrifuged 

and the equilibrated liquid was extracted for use in the experiments.  The amount of equilibrated 

liquid extracted was replaced byfreshdistilled water to allowfurther desorption of soluble matter 

(reduced cations, NOM, and microorganisms).  A thousand mg/l of H2O2 was added and the 

concentration in the liquid phase was tracked over a twenty four hour period.  The above steps 

were repeated six times.  Two replicates were conducted for every equilibrated water sample run. 

The equilibrated water solution prepared the first five runs was not autoclaved and utilized to 

examine the hydrogen peroxide reactivity due to biotic process.  The equilibrated water solution 
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prepared on the sixth run was autoclaved to examine the hydrogen peroxide reactivity due to 

abiotic reactions.  The sample for the abiotic reaction run was prepared by autoclaving. The 

detailed summary of the autoclaving conditions is listed in Table 4.8.  The sample was prepared 

by the research teamofDr. Lewis Brown, MSU. A single replica of1,000mg/lhydrogenperoxide 

solution was conducted in each run, which served as a control, yielding a total of six replicas. 

Fate of Hydrogen Peroxide within the Sediment 

This experiment was designed to examine the reactivityofhydrogen peroxide with soluble 

sediment constituents and the effect ofhydrogenperoxide additionon removalofPAHs within the 

Lake Superior sediment.  A 30% (w/w) slurry samples were prepared by mixing 75 grams of 

sediment (on a dry weight basis) and 175 ml of DI water within a 500 ml Erlenmeyer flask.  The 

slurry samples were homogenized for 24 hours. The sediment samples that required sterilization 

were autoclaved at 121oC and 15 psi for at least 15 minutes in Dr. Brown’s laboratory.  The 

operating conditions for this set of experiments are summarized in Table 4.9.  The 1,000 ppm 

hydrogenperoxide experiments were dosed with1,000 mg/lhydrogenperoxide at 0, 2, 6, 24, 30, 

48, and 60 hours of the reaction yielding anapplied totalunreacted dose of 7,000 mg/l hydrogen 

peroxide. The 10,000 ppm hydrogen peroxide experiments were dosed with 10,000 mg/l 

hydrogen peroxide at 0, 6, 24, 30, 48, and 60 hours of the treatment yielding anunreacted total 

applied dose of 60,000 mg/l hydrogen peroxide.  The 100,000 ppm hydrogen peroxide 

experiments were dosed with 100,000 mg/l hydrogen peroxide at 0, 20, 41, 61, 64, 83, 91, 105, 

130, 149 and 173 hours of the reactionyielding anapplied totalunreacted dose of1,100,000 mg/l 
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hydrogen peroxide. Slurry sample was collected for H2O2 analysis. Additionally, slurry samples 

were also collected before and after each hydrogen peroxide treatment for PAHs analysis. 

Fenton’s Reagent Experiments 

This set of experiments was designed to examine the efficacy of Fenton’s Reagent for 

removing PAHs within the Lake Superior sediment.  The Fenton’s Reagent experiments were 

conducted in500 mlErlenmeyer flasks.  Ferrous sulfate was added at least 24 hours prior to H2O2 

addition.  The 24-hour equilibration period allows the ferrous sulfate to become homogenous in the 

sediment and also to diffuse into the pores of the soil particles. A summary of Fenton’s Reagent 

experiments performed on the Lake Superior sediment is shown in Table 4.10 and the detailed 

summary of Fenton’s Reagent additions is listed in Table 4.11.  Soil samples for PAH analysis 

were collected after every hydrogen peroxide dosing. 

Phase I: Integrated Experiments 

This set of experiments was designed to examine the efficacy of Fenton’s Reagent for 

removalofPAH within a previously biotreated sediment.  The sediment utilized was Scioto River 

sediment.  These experiments were conducted similar to the Fenton’s Reagent experiments. A 

summary of Fenton’s Reagent additions within the Scioto River sediment is presented in Table 

4.12. Soil samples for PAH analysis also were collected after every hydrogen peroxide dosing. 



www.manaraa.com

 

 

 

           

       

     

    

 

    

             

       

    

46 

Phase II: Bench-scale Bioslurry Experiments 

As stated earlier, Figure 4.2 presents a photograph of the bioslurryreactor setup used in 

this study.  The mixing rate of the mixer was set at 300 rpm, which provided mixing conditions 

where the sediment was gently turned over continuously.  The temperature in the bioreactors was 

controlled by maintaining the temperature of the room between 70oF and 75oF.  Aeration was 

provided to all bioreactors by diffused air supplied through sparging frits (Qair = 10 scfh) located 

on the bottom of the reactor. 

The sediment utilized was the Lake Superior Sediment.  Prior to testing the untreated 

sediment, samples were collected for initial characterization (i.e., PAHs, total solid content, 

dissolved oxygen, oxygen uptake rate, pH, and total heterotrophs).  The slurry samples were 

collected from the bioslurryreactor using a Tygon tubing and peristaltic pump (Masterflex Model 

EZ-Load II).  The Tygon tubing was inserted via one of the outlets located on top of the bioslurry 

reactor.  During the sampling of the slurry, the mixer was stopped to prevent the Tygon tubing from 

tangling up with the propeller.  The slurry samples were not collected from the sampling ports 

located on the side or the bottom because of clogging problems.  The slurry samples collected 

were analyzed for PAHs, total solid content, dissolved oxygen, oxygen uptake rate, pH, and total 

heterotrophs.  A portion of the slurry samples was centrifuged and the supernatant liquid was 

extracted and analyzed for nitrate, ammonia, and ortho-phosphate.  In addition, the presence of 

volatile organic carbon, carbon dioxide, and oxygen in the column headspace of the bioslurry 

reactors also were analyzed using a multi-gas 

analyzer. 
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Four different conditions were evaluated using duplicate bioslurryreactors (yielding a total 

of 8 reactors).  For each bioslurry reactor, 1.5 kg of contaminated sediment (on a dry weight basis) 

was mixed with 3.5 kg of distilled water to form a 30% by-weight slurry. 

A summary of treatment conditions used for this experiment is listed in Table 4.13.  No 

nutrients, microbial or growth substrates were added to Reactors 1 and 2; thus, they served as 

biotic controls. Reactors 3 and 4 were dosed with nutrients only.  Reactors 5 and 6 were dosed 

with nutrients and a microbial inoculum (provided by Dr. Brown of the Department of Biological 

Sciences, MSU).  The microbial inoculum was cultured specifically for the degradation of 

naphthalene as a growth substrate.  The population density of the naphthalene degraders in the 

inoculum was approximately 1x108 CFUs/ml.  Twnety ml ofthe microbialinoculum was added on 

the 1st and 11th day of the experiment. Meanwhile, 500 ml ofthe microbial inoculum was added 

on the 50th day of the experiment.  Reactors 7 and 8 were dosed with nutrients, the microbial 

inoculum, co-metabolites (e.g.,glucose,sodium acetate, naphthalene), and surfactant (e.g., Tween 

80). Twenty ml of the microbial inoculum was added on the 1st and 11th day of the experiment. 

One thousand mg/lglucose was added as anexternalgrowthsubstrate on the 1st, 11th and 23rd day 

of the experiments.  Followed by 100 mg/l sodium acetate addition on the 50th and 63rd dayof the 

experiments. Next, 1 liter of 25 mg/l of naphthalene was dosed on the 53rd and 65th day of the 

experiments.  Finally, Tween 80 was dosed at 5 % by weight on the 74th and 86th day of the 

experiments, and at 2.5% byweight on the 107th and 116th dayof the experiments.  Note that the 

details on this dosing strategy are discussed in Chapter 8. 
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Phase II: Integrated Chemical Oxidation Experiments 

The chemical oxidation experiments were conducted using the same setups utilized in the 

chemical oxidation screening phase. Fenton’s Reagent, ozone, and peroxone were all tested on 

slurry samples collected from Reactors 3 and 4, which involved nutrients addition only.  This set 

was chosen because of minimal differences noted between the various test systems.  Reactors 3 

and 4 were also chosenbecause it was believed that the foaming would be minimalwhenoxidizing 

the slurry since there was no external microorganisms inoculated nor surfactant added.  Equal 

portions of slurry  from the two replicate bioreactors were pumped out using the Masterflex 

peristaltic pump and mixed together. Then the mixture was divided into several portions and the 

various chemical oxidation strategies applied.  After the applications of the chemical oxidizers, 

biologicalactivitywas reestablished.  Note that the details on this post-oxidation step are discussed 

in the next segment. 

Fenton’s Reagent also was tested on slurry samples collected from Reactors 5 and 6, 

whichinvolved the addition of nutrients and bio-augmentation.  Reactors 5 and 6 were chosen  to 

prove the fact that naphthalene biodegradation was hindered due to limited bioavailabilityand can 

be enhanced by adding Fenton’s Reagent.  After this oxidation step, the chemical primed slurry 

was mixed and poured back in equal portions into Reactors 5 and 6. 

Ozonation and Peroxone Treatments 

Bothozone and peroxone experiments were conducted induplicate at anozone volumetric 

flowrate of 2.5 scfh at 100% voltage, which yields a 3% (w/w) ozonated oxygen stream. 



www.manaraa.com

  

     

  

  

      

 

      

 

    

        

 

       

    

  

49 

Summaries of conditions used with ozone and peroxone treatments are listed in Table 4.14.  The 

summary for hydrogen peroxide dosing sequences used during the peroxone treatments is listed 

as Table 4.15.  Samples for both ozone and peroxone treatments were taken for PAH, total solids, 

dissolved oxygen, oxygenuptake rate, pH, nitrate, ammonia, ortho-phosphate, temperature, and 

total heterotrophs analyses every four hours. 

Fenton’s Reagent Treatments 

Hydrogenperoxide and ferrous salt were dosed at a concentration ratio of H2O2 :Fe2+ = 

10 : 1. All Fenton’s Reagent experiments were conducted in duplicate. A summary of Fenton’s 

Reagent treatments is shown in Tables 4.16.  For the slurry from Reactors 3 and 4, a total of 

350,000 mg/l H2O2 and 35,000 mg/l Fe2+ were applied to each replicate, respectively. One the 

other hand, the slurry from Reactors 5 and 6 had a total of 450,000 mg/l H2O2 and 45,000 mg/l 

Fe2+ added to each replicate, respectively.  For both experiments, the Fenton’s Reagent was 

applied over six dosing events.  The distribution of the Fenton’s Reagent dosing and the treatment 

conditions are also summarized in Table 4.16. The slurry samples were collected for PAH, total 

solids, dissolved oxygen, pH, nitrate, ammonia, ortho-phosphate, temperature, and total 

heterotrophs analyses after each dosing. 

Phase II: Post Oxidation Experiments (Re-established Biotreatment) 

After chemical oxidation, the slurries from Reactors 3 and 4 were poured back into the 

bioslurry reactors. Then, the pH was adjusted back to about 7 byadding appropriate amount of 

2M sodium hydroxide solution.  Biological activity within the slurry system was re-established by 
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adding 40 ml of the microbialinoculum.  At this same time, nutrients were dosed at 1,000 mg/l and 

400 mg/lof nitrates and ortho-phosphate, respectively.  Samples were thenperiodically collected 

for PAH, total solids, dissolved oxygen, oxygen uptake rate, pH, nitrate, ammonia, ortho-

phosphate, temperature, and total heterotrophs. 

For Reactors 5 and 6, biologicalactivitywithin the sediment was not reestablished and the 

PAH levels within the sediment were not monitored.  This is because it was believed that the post-

oxidation results of the chemical primed slurries (Reactors 3 and 4) would give a good 

representationof the success ofcombining bioremediationand chemicaloxidationintoasingle-step 

treatment strategy. 

Analytical Methods 

Dissolved Oxygen 

Dissolved oxygen (DO) was measured using a YSITM  Dissolved Oxygen Portable Meter 

Model52and abiochemicaloxygendemand (BOD) probe (Model5905/5010).  The BOD probe 

features a self-stirring mechanism (i.e., stir paddle) that keeps the contents in a BOD bottle well 

mixed. The BOD probe was calibrated daily using air calibration. In between samples, the DO 

probe was rinsed and blot-dried with tissue.  Lower detectable limit for the BOD probe is 0.01 

mg/l. 

Oxygen Uptake Rate (OUR) 

In order to perform this test, 350 ml of sample was poured into a biochemical oxygen 
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d e m a n d b ottl e a n d t h e i niti al D O r e c or d e d.  Aft er 1 0 mi n ut es, fi n al D O w as m e as ur e d a n d t h e 

O U R ( m g O 2 /lit er- hr) c al c ul at e d usi n g t h e f oll o wi n g e q u ati o n: 

6 0 x ( D O i - D O f )O U R =  ( 4. 1)
t 

w h er e: 

D O i = I niti al diss ol v e d o x y g e n, m g/l 
D O f = Fi n al diss ol v e d o x y g e n, m g/l 
t = ti m e i nt er v al, mi n 

H e a ds p a c e G as A n al ysis 

A p ort a bl e m ulti- g as a n al y z er ( G as T e c h I n c.) w as utilize d d uri n g t his st u d y t o m e as ur e % 

o x y ge n, % c ar b o n di o xi d e, l o w er e x pl osi v e le vels ( L E L) a n d p arts p er milli o n ( p p m)  of 

h y dr o c ar b o ns i n t h e h e a d-s p a c e of t h e b e n c h-s c al e bi osl urr y r e a ct ors.  T h e m ulti- g as a n al y z er is 

e q ui p p e d wit h a n el e ctr o c h e mi c al o x y g e n s e ns or, a n i nfr ar e d c ar b o n di o xi d e s e ns or, a n d a c at al yti c 

h y dr o c ar b o n s e ns or.  T h e o x y g e n, c ar b o n di o xi d e, a n d h y dr o c ar b o n s e ns ors w er e c ali br at e d t o 

1 2 % v ol u me o x y g e n, 2. 5 % v ol u me c ar b o n di o xi d e, a n d 5 0 % of L E L, r es p e cti v el y.  L o w er 

d et e ct a bl e li mits f or o x y g e n s e ns or, c ar b o n di o xi d e, a n d V O Cs ar e 0. 1 %, 0. 1 %, a n d 1 p p m. 

Ir o n 

Ir o n i nt he li q ui d p h as e w as d et er mi n e d usi n g a n Ir o n- P h e n a nt hr oli n e M et h o d ( H A C HT M ). 

T h e c o nt e nts of a H a c h br a n d p h e n a nt hr oli n e r e a g e nt pill o w ar e a d d e d t o 5 ml of s a m pl e i n a 2 0 

ml t u b e a n d t h e mi xt ur e t h or o u g hl y mi x e d.  D uri n g r e a cti o n, t h e t est r e a g e nt r e a cts wit h t h e ir o n i n 

t h e s a m pl e t o yi el d a r e d- or a n g e c ol or.  T h e i nt e nsit y of t he c ol or is m e as ur e d a n d c o m p ar e d t o 



www.manaraa.com

   

           

                 

 

    

       

  

         

 

          

            

        

52 

a color coded scale.  When necessary, samples were diluted with distilled water to reduce the 

concentrations to levels that are lower than the upper detection limit of the test (5 mg/L). Lower 

detectable limit for this method is 0.1 mg/l. 

Manganese 

Manganeseinthe liquidphase was determined using a Periodate Method (HACHTM).  The 

contents of a Hach brand Citrate reagent pillows are added to 5ml of sample in a tube and 

thoroughly mixed.  Then, the same steps are repeated except that the contents of a Hach brand 

sodium periodate reagent pilloware used.  During reaction, sodium periodate reagent oxidizes the 

manganese in the sample to yield a purple permanganate color.  The intensity of the color is 

measured and compared to a color coded scale.  When necessary, samples were diluted with 

distilled water to reduce the concentrations to levels that are lower than the upper detection limit 

of the test (3 mg/l). Lower detectable limit for this method is 0.1 mg/l. 

Liquid-Phase Hydrogen Peroxide Concentration 

The desired hydrogenperoxide concentrations were achieved byadding the concentrated 

stock solutions to the slurry. The amount of hydrogen peroxide added was formulated based on 

the total volume of the slurry (i.e., mg of H2O2 / liter of slurry volume). The hydrogen peroxide 

concentrationin the liquidphasewasanalyzed using a RQflexMeter (EM ScienceTM).  The RQflex 

Method uses specially designed hydrogen peroxide test strips containing an organic redox 

indicator. In order to measure hydrogen peroxide, the strip is immersed in the supernatant liquid 



www.manaraa.com

    

          

    

        

      

        

     

 

                 

                 

      

            

      

            

    

53 

for 2 seconds to thoroughly moistened the tip.  During a 15-second reaction time, the oxygen from 

hydrogenperoxide decompositionconverts the redox indicator into a blue oxidationproduct.  The 

intensity of the blue oxidation product is measured by inserting the tip into the RQflex meter and 

a reading taken. When necessary, the supernatant liquid samples were diluted withdistilled water 

to reduce the concentrations to levels lower that are lower than the upper detection limit for this 

method (20 ppm). Lower detectable limit for the hydrogen peroxide strip 0.2 mg/l. 

Microbial Enumeration (Total Heterotrophs) 

Total heterotrophic microbialenumerations were used to measure active aerobic bacterial 

populations within the sediments and slurries.  Counts were accomplished using a pour plate 

technique amended with nutrient agar (Hach Company).  Enumeration of heterotrophs was done 

by transferring 1 mlofslurryinto 99 mlofphosphate buffered contained ina dilutionbottle resulting 

in 1:100 dilution.  The dilution step was repeated until the desired dilution factor was achieved. 

Then1 mlofeachdilutionand moderate amount ofagarwasaddedonto pour plates and incubated 

for 48 hours at 35oC within an incubator (Fisher Scientific Isotemp Standard 600 Series). 

Colonies formed on the plates were visible as distinct circles and countable plates were 

characterized as those having visible separate colonies.  Counting was accomplished by physically 

counting the total amount of visible and separate colonies using a lighted colony counter (Leica 

Model 3325, New York).  Counts were expressed as colony forming units per gram of dry soil 

(CFUs/g soil) and calculated using the following equation: 
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N x D F 
Mi cr o bi al C o u nts ( C F Us / g)  = 

( 1 0 0 - M C)  ( 4. 2)
C  xsl urr y 1 0 0 

w h er e, 

N = C o u nts, C F Us/ ml 
D F = Dil uti o n f a ct or 
C sl urr y = Sl urr y c o n c e ntr ati o n, g/ ml 
M C = M oist ur e c o nt e nt of t h e s oil, % 

Nitr at e a n d A m m o ni a 

B ot h nitr at e a n d a m m o ni a c o n c e ntr ati o ns w er e m e as ur e d usi n g a p pr o pri at e i o n s el e cti v e 

pr o b es a n d a n A c c u m et M o d el 1 5 M et er.  B ot h t h e nitr at e a n d a m m o ni a pr o b es w er e c ali br at e d 

usi n g st a n d ar ds of 0. 0 0 1 M, 0. 0 1 M a n d 0. 1 M pr e p ar e d fr o m a st o c k s ol uti o n of 1 0 M.  St a n d ar ds 

a n d s a m pl es w er e pr e p ar e d f or a n al ysis b y a d di n g 1 ml of i o ni c str e n gt h e n er a dj ust er (I S A) p er 

1 0 0 ml of st a n d ar d or s a m pl e.  T h e pr o b es w er e c ali br at e d pri or t o a n al ys es.  L o w er d et e ct a bl e 

li mit f or b ot h pr o b es is 0. 0 0 1 m ol/l. 

Ort h o- P h os p h at e 

Ort h o- P h os p h at e  ( O P)  c o n c e ntr ati o n  w as  d et er mi n e d  usi n g  t h e  H a c h T M P h os v er 3 

M et h o d.  T his c ol ori m etri c t e c h ni q u e utili z es t h e H a c hT M N o. 5 0 1 0 S p e ctr o p h ot o m et er f or t esti n g. 

T o p erf or m t his t est, 5 ml of s a m pl e a n d 4 ml of distill e d w at er w er e mi x e d i n a t est vial.   T he 

mi xt ur e w as t h e n pl a c e d i n t he s p e ctr o p h ot o m et er t o z er o t he m a c hi n e.  T h e n t h e P h os v er 3 

r e a g e nt p o w d er pill o w w as a d d e d t o t h e t u b e a n d ri g or o usl y mi x e d wit h t h e s a m pl e.  D uri n g t h e 
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two-minute reaction, the reagent powder reacts with the phosphate in the sample to yield a blue 

molybdenum-complex.  The intensity of the blue molybdenum complex is measured by placing the 

tube into the spectrophotometer and a reading was obtained.  When necessary, samples were 

diluted with distilled water to lower the concentrations to the identifiable upper detection limit of 

2.5 mg/l. Lower detectable limit is 0.01. 

pH 

The pH in the liquid phase and slurry were measured using a pH probe and Accumet 

Meter Model 15 (Fisher Scientific).  The meter was calibrated using standard buffers of pH-4, pH-

7, and pH-10. In between analyses, the pHprobe was rinsed with distilled water and blot-dried 

with paper towel. The probe was calibrated prior to analysis. 

Total Organic Carbon 

Total organic carbon (TOC) was determined using a Shimadzu TOC analyzer (Model 

TOC-5000A CE) coupled with a Solid Sampling Module (SSM).  The SSM provides the TOC 

analyzer the capacityto analyze for solid samples, such as soil and sediment.  In order to prepare 

for this test, samples were dried in a desiccator before weighing inceramic boats.  Two boats are 

required for a TOC analysis because the TOC analysis is separated into two sections; 

measurement of total carbon (TC) and inorganic carbon (IC).  In the TC phase, a known amount 

of sample is inserted into a furnace set at 900 oC.  In the furnace, all of the carbon is oxidized into 

carbon dioxide and channeled to the TOC analyzer using ultra-high purity helium.  The carbon 

dioxide is analyzed by matching the generated spectrum against a TC calibration curve.  In the IC 
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s e cti o n, 0. 5 ml of p h os p h ori c a ci d is i nj e ct e d o nt o t he s a m pl e b ef or e i ns erti n g it i nt o a diff er e nt 

h e ati n g c h a m b er s et at 2 0 0 o C.  P h os p h ori c a ci d r e a cts wit h t h e i n or g a ni c c ar b o n i n t h e c h a m b er 

t o yiel d c ar b o n di o xi d e.  Si mil ar t o T C, t h e c ar b o n di o xi d e g e n er at e d is c h a n n el e d i nt o t h e a n al y z er, 

w h er e t he c o n c e ntr ati o n w as d et er mi n e d b y m at c hi n g t he s p e ctr u m a g ai nst a n I C c ali br ati o n c ur v e. 

T he r es ults o bt ai n e d fr o m b ot h T C a n d I C ar e r e p ort e d as m g c ar b o n/ k g of dr y s oil.  Fi n all y, T O C 

is d et er mi n e d b y s u btr a cti n g I C fr o m T C. 

M oist ur e C o nt e nt 

M oist ur e c o nt e nt w as d et er mi n e d b y wei g hi n g a k n o w n a m o u nt of s a m pl e b ef or e a n d aft er 

t he s oil is dri e d i n a l a b or at or y o v e n s et at 1 0 5 o C f or 1 2 h o urs.   T h e n  m oist ur e  c o nt e nt  is 

c al c ul at e d usi n g t h e f oll o wi n g e q u ati o n: 

W - Wt ot al dr y
M oist ur e C o nt e nt, % =  x 1 0 0 %  ( 4. 3)

W t ot al 

w h er e, 

W t ot al = W ei g ht of t h e w et s e di m e nt, gr a m 
W dr y  = W ei g ht of t h e dr y s e di m e nt, gr a m 

T ot al S oli d C o nt e nt 

All sl urri es w er e mi x e d to a c hi e v e a t ot al s oli d c o nt e nt of 3 0 % b y w ei g ht.  Sl urr y a n d 

distill e d w at er w er e mi x e d a c c or di n g t o t h e f oll o wi n g e q u ati o n: 

M C
W ( 1 - )T ot al 1 0 0  ( 4. 4)T ot al S oli d C o nte nt,  %  =  x 1 0 0 %
( W +  DI)T ot al 
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w h er e, 
W T ot al  = W ei g ht of t h e w et s e di m e nt, gr a m 
DI = W ei g ht of distill e d w at er, gr a m 
M C = M oist ur e c o nt e nt (r ef er t o E q u ati o n 4. 3) 

H e a v y M et als A n al ysis 

T h e m et al a n al ysis w as p erf or m e d b y t he r es e ar c h t e a m of Dr. M ar k Bri c k a of  S w al m 

S c h o ol of C h e mi c al E n gi n e eri n g at M S U.   T h e  s e di m e nt  w as  pr e p ar e d  f or  m et als  a n al ysis 

a c c or di n g t o E P A M et h o d 3 0 5 1.  I niti all y, a k n o w n w ei g ht of s e di m e nt is dri e d i n a l a b or at or y 

o v e n at 1 0 5 o C f or t w el v e h o urs a n d t he m oist ur e c o nt e nt is c al c ul at e d b as e d o n E q u ati o n 4. 3. 

T h e n, t he s a m pl e is gr o u n d e d i nm ort ar a n d p estl e.  T h e s e di m e nt is t h e n si e v e d usi n g A S T M E- 1 1 

N o. 3 5 si e v e ( 5 0 0m m).  T h e dri e d s a m pl e is pl a c e d i nt o a v ess el w h er e 1 0 ml of c o n c e ntr at e d nitri c 

a ci d w as a d d e d a n d h e at e d i na m ulti wa ve ( di g esti o n) a c c or di n g t o E P A M et h o d 3 5 0 1.  Aft er t h at, 

t h e di g est e d s a m pl e is filt er e d usi n g 0. 4 5 milli p or e c ell ul os e filt er.  T h e v ess el a n d t he filteri n g u nit 

ar e ri ns e d usi n g 2 % ( v/ v) nitri c a ci d s ol uti o n.  T h e filt er e d s a m pl e is t h e n dil ut e d t o 1 0 0 ml usi n g 

2 % ( v/ v) nitri c a ci d s ol uti o n.  Fi n all y, t h e filt er e d s a m pl e is a n al y z e d f or m et als usi n g o n I n d u c e d 

C o u pl e d Pl as m a (I C P).  T h e c o n c e ntr ati o n of a m et al w as d et er mi n e d b y m at c hi n g t h e s p e ctr u m 

a g ai nst a c ali br ati o n c ur v e.  T h e r es ults o bt ai n e d fr o m t he I C P ar e r e p ort e d as m g m et al/lit er.  T he 

m et al c o n c e ntr ati o n i n m g/ k g is t h e n d et er mi n e d usi n g t h e f oll o wi n g e q u ati o n: 

[I C P] x D F
[ Metal],  m g/ k g = 

M C  ( 4. 5)
W  x ( 1- )T ot al 1 0 0 
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where, 
[Metal] = Metal concentration, mg metal / kg of dry soil 
DF = Dilution factor 
[ICP] = Metal concentration, mg metal / liter 
WTotal = Weight of wet sediment, kg 
MC = Moisture content (refer to Equation 4.3) 

Preparation and Analysis of PAH Samples 

Prior to analysis, PAHs analysis requires sample preparation, extraction, and clean-up. 

PAHs were analyzed according to EPAMethod 8100 using gas chromatography (GC) equipped 

with a flame ionization detector (GC/FID).  Most current GC methods for hydrocarbon based 

products are coupled with FID, primarily because FID is universal and sensitive for most 

hydrocarbons (Xiang and Morgan, 1995). 

Soil Phase Extraction: In this study, PAHs were extracted using ASE 200 Accelerated 

Solvent Extractor equipped with ASE 200 Solvent Controller (DionexCorporation, USA).  The 

Dionex Accelerated Solvent Extraction 200 (ASETM) system is a newly developed technology 

made for extraction of organics (i.e., PAHs) from solid wastes.  This technology meets the 

requirements of USEPA SW-846 Method 3545 for PAH analysis (USEPA, 1996).  ASE was 

chosen over the traditional extraction methods (i.e., Soxhlet and sonication) for the following 

reasons: 

a. Reduced sample preparation and extraction time (minutes vs. hours) 

b. Minimal use of solvents (<15 ml for a 10 g sample) 

c. Elimination of interferences caused by variation in temperature encountered in 
Soxhlet and sonication 
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d. Analytes recoveries fromASEare equivalent to that of the Soxhlet method (EPA, 
1997) 

e. The extraction process is fully automated 

Inorder to prepare for the ASE extraction, slurry samples were mixed withdiatomaceous 

earth (DE) in a beaker before loading into the 33ml ASE 200 cell.  The amount of DE added to 

the soil samples was adjusted according to the recommendations given in ASE 200 Operator’s 

Manual.  Then the cell was loaded on the ASE and extracted according to the following program: 

Solvent: Acetone / Hexane = 1/1 (by volume) 

Oven temperature: 100oC 

Pressure: 1,500 psi 

Heat-up time: 5 minutes 

Static time: 5 minutes 

Static cycle: 3 

Flush volume: 60% 

Purge time: 180 seconds 

Upon completion, the extractant was transferred from the heated cell to a standard 

collection60-ml vial.  The extracts collected in the vial had two separate layers. The water/acetone 

layer was discardedand the anhydrous sodium sulfate was added to PAHs/ hexane layer in the vial 

toabsorb moisture.  Then, sodium sulfate was filtered out by simple gravity filtration technique using 

WhatmanTM filter paper (110 mm diameter). Finally, the PAHs/hexane layer was concentrated 

to 5 ml using an isothermal water-bath set at 40oC. 
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Li q ui d P h as e E xtr a cti o n : P A Hs c o n c e ntr ati o ns i n t h e w at er p h as e w as e xtr a ct e d usi n g a 

s o ni c ati o n t e c h ni q u e.  I n or d er t o p erf or m t his t est, 5 ml of s a m pl e a n d 1 0 ml of t h e h e x a n e a n d 

a c et o n e s ol uti o n w er e mi x e d t o g et h er.  T h e n, t h e mi xt ur e w as s e al e d a n d s o ni c at e d i n a Br a ns o nT M 

Ultr as o ni c Cl e a n er f or 1 2 h o urs wit h p eri o di c ve nti n g of v a p or.  Aft er s o ni c ati o n, t h e w at er/ a c et o n e 

la y er w as dis c ar d e d a n d a n h y dr o us s o di u m s ulf at e w as a d d e d t o a bs or b t h e m oist ur e a n d t h e 

s o di u m s ulf at e filt er e d o ut usi n g t he s a m e filtr ati o n t e c h ni q u e d es cri b e d i n t he s oil p h as e e xtr a cti o n. 

G as C hr o m at o gr a p h y A n al ysis : G as C hr o m at o gr a p h ( G C) a n al ysis w as p erf or m e d o n a 

H e wl ett P a c k ar d 6 8 9 0 T M ( H P) s eri es c a pill ar y c ol u m n g as c hr o m at o gr a p h y e q ui p p e d wit h a FI D 

d et e ct or a n d a n a ut o m ati c li q ui d s a m pl er ( H P G 1 5 1 2 A c o ntr oll er a n d H P G 1 5 1 3 A i nj e ct or).  A 

f us e d sili c a c a pill ar y c ol u m n w as us e d a n d t h e t ot al s yst e m o p er at e d as f oll o ws: C ol u m n: 

J & W S ci e ntifi c T M  F us e d Sili c a C a pill ar y C ol u m n; 

D B- 5   3 0 m  x  0. 2 5  m m  i. d.  x  0. 2 5 m m df ( C at al o g # 1 2 2- 5 0 3 2); 

t e m p er at ur e li mits: - 6 0o C t o 3 5 0 o C 

I nl et: 1 ml; S plitl ess; 1 0 psi at 8 0 o C; 

4 5 c m/s e c wit h Ultr a- Hi g h P urit y H y dr o g e n C arri er; 

1. 5  ml/ mi n i n C o nst a nt Fl o w M o d e 

O v e n Pr o gr a m: 8 0 o C ( 1 mi n) 

2 5 o C/ mi n t o 1 6 0 o C ( 0 mi n) 

3 o C/ mi n t o 3 0 0 o C ( 0 mi n) 

2 0 o C/ mi n t o 3 2 5 o C ( 1 mi n) 
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D et e ct or: FI D, 3 2 5 o C 

P A Hs st a n d ar d mi xt ur e p ur c h as e d fr o m A c c ust a n d ar d I n c. ( N e w H a v e n, C T) w as us e d 

as t he c ali br ati o n st a n d ar d f or t he G C- P A Hs a n al ysis.  T h e P A H s ol uti o n mi xt ur e w as dil ut e d usi n g 

h e x a n e a n d c ali br ati o n w as c o n d u ct e d b y m at c hi n g e a c h p e a k t o t h e k n o w n c o n c e ntr ati o ns.  T h e 

R 2 v al u es f or all 1 6 P A Hs w er e 0. 9 8 or b ett er.   T h e  s u m m ati o n  of  all  1 6  P A H  c o n c e ntr ati o ns 

e xtr a ct e d fr o m t h e s e di m e nt is c all e d T ot alP A Hs.  A k n o w n a m o u nt of P A H s ol uti o n mi xt ur e w as 

a n al y z e d aft er e v er y 1 5 0 e xtr a ct e d s a m pl es t o v erif y t h e r et e nti o n of t he 1 6 P A Hs ( a p pr o xi m at el y 

aft er 1 0 0 s a m pl es) a n d a bl a n k s a m pl e ( h e x a n e) w as i nj e ct e d aft er e v er y t hr e e s a m pl es i nt o t he G C 

t o cl e a n t he c ol u m n a n d t o c h e c k f or P A H r esi d u al.  T h e l o w est P A H st a n d ar d c o n c e ntr ati o n 

c ali br at e d o n t h e G C w as 1 n g/ m l. 

A s u m m ar y of t h e d et e ct e d P A Hs as a n al y z e d b y t h e S w al m C. S c h o ol of C h e mi c al 

E n gi n e eri n g ( E- T e c h) at M S U, D e p art m e nt of F or est Pr o d u cts at M S U ( F P) , a n d W E S at 

Vi c ks b ur g is pr es e nt e d i n T a bl e 4. 1 7.  T his c o m p aris o n w as d o n e t o e ns ur e t h e a d e q u a c y of t h e 

P A H a n al yti c al t e c h ni q u es b y c o m p ari n g t h e a n al yti c al r es ults fr o m t his st u d y t o t h os e g e n er at e d 

b y t w o w ell- est a blis h e d l a b or at ori es.  First of all, t h e r es ults s h o w t h at m ost of t h e P A Hs d et e ct e d 

b y E- T e c h ar e i nt he s a m e m a g nit u d e, i nc o m p aris o n t o t he ot h er l a b or at ori es, wit h t h e e x c e pti o ns 

of a c e n a p ht h yl e n e, b e n z o[ g, h,i] p er yl e n e, a n d i n d e n o[ 1, 2, 3- c d] p yr e n e.  T h e a m o u nt of t w o t o f o ur 

ri n gs P A Hs o bt ai n e d b y E- T e c h m at c h es  cl os el y  t o  t h e  v al u es  r e p ort e d    b y  W E S  wit h  t h e 

e x c e pti o n of a c e n a p ht h yl e n e.  O n t h e ot h er h a n d, t h e a m o u nt of fi v e-ri n g a n d si x-ri n g P A Hs 

d et e ct e d b y E- T e c h is hi g h er t h a n t h e v al u es r e p ort e d fr o m b ot h W E S a n d F P.  T h e dis cr e p a n c y 

i n t he P A H a m o u nt c o ul d h a v e res ult e d fr o m h et er o g e n e o us pr o p erti es of t h e L a k e S u p eri or 
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Sediment.  Finally, the Total PAH amount detected by E-Tech is slightly higher than the Total PAH 

detected by FP and also anorder ofmagnitude lower thanthe TotalPAH reported by WES.  The 

magnitude indifference betweenthe TotalPAHdetected byE-Tech  and WES is mainly attributed 

to acenaphthylene.  This trend could have resulted fromheterogeneous properties of the sediment. 

Overall, the amount of PAHs detected in the sediment by E-Tech matches closely to the amount 

of PAHs detected by FP and reported values by WES with the exception of the acenaphthylene 

amount. 
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Table 4.1. Summary of PAHs in Lake Superior and Scioto River Sediments 

Analysis Lake Superior Scioto River 

Naphthalene 181.91 1.33 

Acenaphthylene 6.41 0.21 

Acenaphthene 27.79 0.02 

Fluorene 23.36 0.24 

Anthracene 29.35 4.38 

Phenanthrene 62.75 1.03 

Fluoranthene 52.94 4.53 

Pyrene 38.02 2.24 

Benzo[a]anthracene 26.60 4.38 

Chrysene 23.90 1.70 

Benzo[b]fluoranthene 24.06 0.46 

Benzo[k]fluoranthene 18.69 1.57 

Benzo[a]pyrene 27.13 1.80 

Benzo[g,h,i]perylene 13.73 1.73 

Indeno[1,2,3-cd]pyrene 15.80 2.01 

Total PAHs, mg/kg 572.43 27.63 

Notes: 
- The PAH amount is reported as mg of PAH / kg of dry soil 
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Table 4.1. (Continued) 

Analysis Lake Superior Scioto River 

Total Heterotroph Counts, CFUs/g 9433 12166 

Moisture, Content, % 50 52 

Total Organic Carbon, mg/kg 96627.2 44764.5 

pH 7.2 7.6 

Notes: 
- The PAH amount is reported as mg of PAH / kg of dry soil 
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Table 4.2. Summary of Sediments Utilized in the Experiments Conducted in this Study 

Phase Treatment 
Type 

Experiment Sediment 

I 

Biotreatment 

Bioavailability of Naphthalene Lake Superior 

Biotreatment of Scioto River Sediment Scioto River 

Biotreatment Lake Superior Sediment Lake Superior 

Impact of Tween 80 and Glucose Amending on 
PAH Degradation 

Lake Superior 

Chemical 
Oxidation 

Ozonation of PAHs Contaminated Sediment Lake Superior 

Peroxone Treatment of PAHs Contaminated 
Sediment 

Lake Superior 

Fate of Hydrogen Peroxide in Equilibrated 
Water Solutions 

Lake Superior 

Fate of PAHs and Hydrogen Peroxide within the 
Sediment 

Lake Superior 

Impact of Fenton’s Reagent Addition on PAHs 
Contaminated Sediment 

Lake Superior 

Integrated Fenton’s Reagent Treatment Scioto River 

II 

Biotreatment Bioslurry Reactors Lake Superior 

Integrated 
Ozone Treatment Lake Superior 

Peroxone Treatment Lake Superior 

Fenton’s Reagent Treatment Lake Superior 
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Table 4.3. Operating Conditions for Phase I: Shake-Flask Biotreatment, Scioto River 
Sediment (Performed in duplicate) 

Condition Nutrients Microbes Surfactant 

a – Native – 

b N & P1 Native – 

c N & P1 Inoculated2 – 

d N & P1 Inoculated2 Tween 803 

Notes: 
1PAH:N:P = 100:20:5 addition once a week 
2Activated sludge from the return line of a local wastewater treatment plant 
30.5% (w/w) the first week and 0.25% (w/w) the following weeks 
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Table 4.4. Operating Conditions for Phase I: Shake-Flask Biotreatment Tests, Lake Superior 
Sediment (Performed in duplicate) 

Condition Nutrients Microbes Surfactant External Growth 
Substrate 

a – Native – – 

b N & P1 Native – – 

c N & P2 Native – – 

d N & P1 Inoculated4 – – 

e N & P1 Inoculated5 Tween 807 – 

f N & P3 Inoculated6 Tween 808 – 

g N & P3 Inoculated6 – Glucose9 

Notes: 
1PAH:N:P = 100:20:5 
2PAH:N:P = 1:32:13 
3N & P concentrations of 100 mg/l and 20 mg/l, respectively 
4Activated sludge from the return line of a local wastewater treatment plant 
5Activated sludge from the return line of a swine operation 
6Multiringed PAH degraders 
70.5% (w/w) the first week and 0.25% (w/w) the following weeks 
83% (w/w) the first two weeks and 1.5 % (w/w) the following weeks 
9100 mg/l glucose addition once a week 
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Table 4.5. Operating Conditions for Phase I: Shake-Flask Bioavailability Experiments 
(Performed in duplicate) 

Condition1 Microbes2 Naphthalene addition3, mg/l Dry sediment4, g 

1 Inoculated 25 -

2 Inoculated - 31.25 

Notes: 
1All samplings were conducted at 0, 1.6, and 70.1 treatment hours 
2Naphthalene degraders 
3Analyzed for naphthalene in the liquid phase 
4Analyzed for naphthalene in both the liquid and soil phases 

Table 4.6. Operating Conditions for Phase I: Ozone and Peroxone Treatments, Lake Superior 
Sediment (Performed in duplicate) 

Flowrate:2.5 scfh at 100 % voltage setting 

Treatment type Peroxone Ozone 

Percent ozone, % 3 3 

Amount of H2O2 added, mg/l 2,6871 Not Applicable 

Notes: 
1Hydrogen peroxide dosing sequences are listed in Table 4.7. 
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Table 4.7. Summary of the Hydrogen Peroxide Dosing Sequences for Phase I:Peroxone 
Treatments, Lake Superior Sediment (Performed in duplicate) 

Treatment Time1 (hr) Amount of H2O2 added, mg/l Cumulative Total H2O2, 

mg/l 

0 62.5 62.5 

2 62.5 125 

4 62.5 187.5 

6 500 687.5 

9 500 1,187.5 

12 500 1,687.5 

15 500 2,187 

18 500 2,687.5 

21 - -

Note: 
1Denotes soil sampling for PAHs analysis 
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Table 4.8. Operating Conditions for the Fate of Hydrogen Peroxide in Equilibrated Water 
Test, Lake Superior Sediment 

1Run Control 2,3 Not-autoclaved 2,4 Autoclaved 2,4,5 

1st HP HP -

2nd HP HP -

3rd HP HP -

4th HP HP -

5th HP HP/THC -

6th HP - HP/THC 

Notes: 
1Described in the Method section 
21,000 mg/l hydrogen peroxide addition 
3Single replicate 
4Duplicate 
5Autoclaved at 121oC and 15 psi for 15 minutes 
- HP: Hydrogen peroxide analysis, mg/l 
- THC: Total heterotrophic counts, CFUs/ml 
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Table 4.9. Operating Conditions for Testing the Fate of Hydrogen Peroxide within Sediment 
Compartment, Lake Superior Sediment. 

Condition Hydrogen peroxide dosing 
concentration, mg/l 

Cumulative Total H2O2, mg/l 

Not autoclaved 1,000 7,000 

Not autoclaved 10,000 60,000 

Not autoclaved 100,000 1,100,000 

Autoclaved1 100,000 1,100,000 

Notes: 
1Sediment that was autoclaved at 121oC and 15 psi for 15 minutes 
- Hydrogen peroxide analysis was conducted in triplicate 
- Soil samples for PAHs analysis were conducted in duplicate 
- Total heterotrophic counts were conducted in duplicate 

Table 4.10. Operating Conditions for Phase I: Fenton’s Reagent Treatments, Lake Superior 
Sediment (Performed in duplicate) 

Condition [H2O2], mg/l Fe2+, mg/l Number of 
applications 

H2O2/Fe2+ ratio 

A 25,000 2,500 71 10:1 

B 100,000 10,000 7 10:1 

Notes: 
1Dosing for steps 4-7: 100,000 mg/l H2O2 and 10,000 mg/l Fe2+ 
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Table 4.11. Test Schedule for Phase I: Fenton’s Reagent Additions, Lake Superior Sediment 
(Performed in duplicate) 

Step 
Number 

Time,
 hr 

A B 

HP Fe HP Fe 

1st 01 - 2,500 - 10,000 

24 25,000 - 100,000 -

2nd 481 - 2,500 - 10,000 

72 25,000 - 100,000 -

3rd 961 - 2,500 - 10,000 

120 25,000 - 100,000 -

4th  1441 - 10,00 - 10,000

 168 100,000 - 100,000 

5th 1921 - 10,000 10,000 

216 100,000 - 100,000 -

6th 2401 - 10,000 - 10,000 

264 100,000 - 100,000 -

7th 2881 - 10,000 - 10,000 

312 100,000 - 100,000 -

Total, mg/l 475,000 47,500 700,000 70,000 

Notes: 
1Soil sampled for PAH analysis 
- HP: Hydrogen peroxide addition, mg/l 
- Fe: Ferrous sulfate addition, mg/l 
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Table 4.12. Operating Conditions for Phase I: Integrated Fenton’s Reagent Treatments, 
Scioto River Sediment (Performed in duplicate) 

Dosing Step 
Number Timing, hr 

H2O2/Fe2+ ratio = 10:1 

HP Fe 

1st 01 - 2,000 

24 20,000 -

2nd 481 - 5,000

 72 50,000 -

3rd  961 - 5,000

 120 50,000 -

4th  1441 - 10,000

 168 100,000 -

5th 1921 - 10,000 

216 100,000 -

6th 2401 - 10,000 

264 100,000 -

7th 2881 - 10,000 

312 100,000 -

8th 3361 - 10,000 

360 100,000 -

3841 - -

Total amount 620,000 62,000 

Notes: 
1Soil sampling for PAH analysis 
- HP: Hydrogen peroxide addition, mg/l 
- Fe: Ferrous sulfate addition, mg/l 
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Table 4.13. Operating Conditions for Phase II: Biotreatment Tests, Lake Superior Sediment 
(Performed in duplicate) 

Reactor No. Nutrient Microbes External Growth Substrates Surfactant 

1 – Native – – 

2 – Native – – 

3 N & P1 Native – – 

4 N & P1 Native – – 

5 N & P1 Inoculated2 – – 

6 N & P1 Inoculated2 – – 

7 N & P1 Inoculated2 Glucose3/Acetate4/Nap5 Tween 806 

8 N & P1 Inoculated2 Glucose3/Acetate4/Nap5 Tween 806 

Notes: 
1Nitrate and Phosphate additions at 100 mg/l and 40 mg/l, respectively, the first three weeks, and 
increased to 1,000 mg/l and 400 mg/l the following weeks 
2Naphthalene degrader (Days 1 and 11 of the experiments) 
3Glucose dosing at 1,000 mg/l (Days 1, 11, and 23 of the experiments) 
4Sodium acetate dosing at 100 mg/l (Days 50 and 63 of the experiments) 
51 liter of 25 mg/l naphthalene addition (Days 53 and 65 of the experiments) 
6Initial Tween 80 addition at 5% by weight, (Days 74 and 86 of the experiments) followed by 
2.5% by weight (Days 107 and 116 of the experiments) 
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Table 4.14. Operating Conditions for Phase II: Integrated Ozone and Peroxone Treatment 
Tests, Lake Superior Sediment (Reactors 3 and 4) (Performed in duplicate) 

Flowrate:2.5 scfh at 100% voltage setting 

Treatment type Peroxone Ozone 

Percent ozone, % 3 3 

Amount of H2O2 added, mg/l 2,4001 -

Notes: 
1Hydrogen peroxide dosing sequences is summarized in Table 4.15 

Table 4.15. Summary of Hydrogen Peroxide Dosing Sequences for the Phase II: Integrated 
Peroxone Treatment of Lake Superior Sediment Tests (Performed in duplicate) 

Treatment Time, hr Amount of H2O2 added  mg/l, Cumulative Total H2O2, 

mg/l 

0 100 100 

1 100 200 

2 100 300 

3 100 400 

41 500 900 

5 500 1,400 

6 500 1,900 

7 500 2,400 

81 - -

Note: 
1Soil sampled for PAH analysis 
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Table 4.16. Operating Conditions for Phase II: Integrated Fenton’s Reagent Treatment, Lake 
Superior Sediment (Reactors 3 through 6) (Performed in duplicate) 

Step No. 
Timing, hr 

Reactors 3 & 4 Reactors 5 & 6 

HP Fe HP Fe 

1st 01 - 2,500 - 2,500 

24 25,000 - 25,000 -

2nd 481 - 2,500 - 2,500

 72 25,000 - 25,000 -

3rd  961 - 5,000 - 10,000

 120 50,000 - 100,000 -

4th  1441 - 5,000 - 10,000

 168 50,000 - 100,000 -

5th 1921 - 10,000 - 10,000 

216 100,000 - 100,000 -

6th 2401 - 10,000 - 10,000 

264 100,000 - 100,000 -

2881 - - - -

Total, mg/l 350,000 35,000 450,000 45,000 

Notes: 
1Soil sampled for PAH analysis 
- HP: Hydrogen peroxide addition, mg/l 
- Fe: Ferrous sulfate addition, mg/l 
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Table 4.17. PAH Results of Lake Superior Sediment 

PAH Compound 
Amount in mg of PAH / kg of dry soil 

E-Tech1 Forest Products2 WES3 

Two rings: 

Naphthalene 181.91 168.02 194.67 

Three rings: 

Acenaphthylene 6.41 2.830 7,100.00 

Acenaphthene 27.79 16.20 26.02 

Fluorene 23.36 12.65 21.57 

Anthracene 29.35 17.98 31.05 

Phenanthrene 62.75 39.08 71.40 

Four rings: 

Fluoranthene 52.94 33.45 54.95 

Pyrene 38.02 24.15 50.25 

Benzo[a]anthracene 26.60 15.18 24.47 

Chrysene 23.90 12.88 23.50 

Five rings: 

Benzo[b]fluoranthene 24.06 ND 24.454 

Benzo[k]fluoranthene 18.69 ND 

Benzo[a]pyrene 27.13 14.58 14.95 

Notes: 
1Swalm C. School of Chemical Engineering, MSU 
2Department of Forest Products, MSU 
3U.S. Army Engineer Waterways Experiment Station, Vicksburg 
4Reported as benzo[k&b]fluoranthene 
- ND: Below detectable limit 
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Table 4.17. (Continued) 

Compound 
Amount in mg of PAH/kg of dry soil 

Chem1 Forest Product2 WES3 

Six rings: 

Benzo[g,h,i]perylene 13.73 5.40 6.20 

Indeno[1,2,3-cd]pyrene 15.80 ND 7.82 

Total PAHs 572.43 362.37 7651.36 

Notes: 
1Swalm C. School of Chemical Engineering, MSU 
2Department of Forest Products, MSU 
3U.S. Army Engineer Waterways Experiment Station, Vicksburg 
4Reported as benzo[k&b]fluoranthene 
- ND: Below detectable limit 
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Figure 4.1. Schematic Drawing of a Bench-Scale Bioslurry Reactor Setup 
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Figure 4.2. Photograph of the Bioslurry Reactor Setup 
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Figure 4.4. Experimental Setup for Ozone and Peroxone Treatment Experiments on 
      Contaminated Slurry 
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CHAPTER V 

PHASE I: BIOTREATMENT SCREENING RESULTS 

This series of shake-flask experiments was performed on both the Lake Superior and 

Scioto River sediments to screen numerous candidate biological conditions as a means of 

determining the optimalconditions forPAHremovaltobe utilized in the bench-scale bioslurrystudy 

(Phase II). This series of experiments also was done as an effort to determine the amount of time 

needed to allow bioremediation sufficient time to perform as a stand-alone process or as a pre-

treatment step. 

Bioavailability Experiment Results 

The objective of this test was to evaluate the mechanisms controlling PAH biodegradation 

within the bioslurry systems.  Note that the Lake Superior sediment was utilized for this study. 

Appendix A presents the raw data along with the standard deviation associated with these data. 

In the liquid system, naphthalene degraders were added to flasks along with 25 mg/l naphthalene. 

Only the naphthalene degraders were added to the sediment slurry system because the sediment 

in this experiment alreadycontained 284 mg/kgofnaphthalene.  Table 5.1 presents the liquid phase 

and the soil phase naphthalene degradation results for this experiment.  The data reveal that 

naphthalene biodegradationin the liquid phase by the naphthalene degraders was significant within 

the first two hours. The liquid set showed 86% biodegradation of the naphthalene within the first 

83 
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two hours. The naphthalene in the liquid phase for the slurry set (derived from naphthalene in the 

sediment) was totally consumed within the first two hours of testing.  Despite the significant 

biodegradationof naphthalene in the liquid phase, the naphthalene levels in the sediment remained 

relatively unchanged over seventyhours of testing.  These findings prove that the low bioavailability 

of naphthalene in the liquid phase to be the limiting factor for the biodegradation of PAHs in the 

sediment.  Additionally, these data show that the enzymatic capability of bacteria for PAH 

biodegradation was not limiting.  Therefore, it is concluded that mass transfer limitations are 

controlling the overall fate ofPAHs within the sediment slurrysystems and not the reactionkinetics 

associated with bacterial enzymes. 

Biotreatment Screening Results for the Scioto River Sediment 

The objective of this test series was to screen various bioremediation strategies for 

eventually selecting a narrower evaluationscheme in later testing.  Note that the different treatment 

conditions were examined in duplicate flasks and the data shown in this chapter represent an 

average of the replicate data.  Appendix A presents the raw data along with the standard deviation 

associated with these data. 

Table 5.2 presents the pH measurements for these tests.  Most of the pH values remained 

relatively constant throughout the four weeks of testing (7.0 +/- 0.5), withthe exceptionof the set 

involving Tween 80.  This neutral pH range is optimal for biological activity (Metcalf and Eddy, 

1991).  The constant decrease in pH for the set involving Tween 80 addition was attributed to the 

formationoforganic acids as by-products of Tween80 biodegradation.  No attempt to buffer this 
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pH change was attempted because of interests associated withdetermining how dramatic the pH 

would change from Tween 80 degradation. 

In terms of Total PAH removal (Figure 5.1), during the first week of bioremediation, a 

slight drop in the Total PAH concentration was observed with all treatments. The decrease in the 

PAH levels may be attributed to heterogeneous contaminant distribution within the slurry and the 

rapid biodegradation of the easily solubilized PAHs.  It is known that when sediment and fresh 

water mix together, the soluble fractions (i.e., NOM, reduced cations, organic contaminants, etc.) 

disperse into the aqueous phase and become homogenized within the slurry (Wang, 1999); thus, 

destabilizing adsorptionequilibria.  On the third week, the sets amended with activated sludge and 

nutrients and nutrients only were the only systems showing any further decrease in Total PAHs 

prior to an increase during the fourth week. The decrease inTotalPAHs was not observed in the 

biotic control, indicating that this disappearance in the Total PAHs was very likely due to 

biodegradation.  The increase in the Total PAHs on the fourth week observed with all the systems, 

except the controls, was  attributed to natural biosurfactants produced due to an increased level 

of bacterial activity.  In a study conducted by Kanga et al. (1997), aqueous phase naphthalene 

levels were increased after the addition of a glycolipid, which is a biosurfactant produced by 

Rhodococcus Species H13-A.  It was concluded that this increase was attributable to 

biosurfactants and the erosionof the soilparticles into smaller fractions; thus, exposing new surface 

area. 

The set involving Tween 80 addition once a week resulted in an increase in Total PAHs 

over the course of this test.  This trend also was observed with Wang (1999) during the 
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biotreatment of TPHs from soil and Tiehm et al. (1997) during the bioremediation of PAHs 

contaminated soil.  Wang (1999) reported that an increase in the TPH concentration was recorded 

after the additionofTween80 on the 21st dayof the biotreatment experiments.  On the other hand, 

Tiehm et al. (1997) reported that an increase in PAHs in the aqueous phase was observed after 

the addition of surfactants (e.g., Arkopal –300 and Sapogenat T-300). This increase observed 

by Tiehm et al. (1997) later did improve the rate and extent of PAHs biodegradation. 

In terms of Light PAH removal (Figure 5.2), the biodegradation of the Light PAHs 

followed the trend observed with the biodegradation of Total PAHs (see Figure 5.1).  The Light 

PAHs for the sets amended with activated sludge and nutrients and nutrients alone disappeared 

during the second week prior to a slight increase on the fourth week.  Again, the disappearance 

of Light PAHs was likely due to biodegradation because the Light PAHs in the control system 

were not removed.  The increase in Light PAHs on the fourth week also was believed to be 

attributable to the production of natural biosurfactants and sediment particle erosion. 

In terms of Heavy PAH removal (Figure 5.3), the biodegradation of Heavy PAHs also 

appears to generally follow the trend observed withthe TotalPAHs (see Figure 5.1).  The results 

show that the increase in the Total PAHs in the sets involving activated sludge and nutrients and 

nutrients alone was mainly Heavy PAHs, as witnessed by a dramatic increase in these PAHs at 

Week 4 and the minimal change seen with the Light PAH data (see Figure 5.2). 
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Biotreatment Screening Results for the Lake Superior Sediment 

Figures 5.4 through 5.8 present the results from the experiments that evaluated various 

bioremediation strategies for the time-course removal of the various fractions of PAHs from the 

Lake Superior sediment.  Note that these data represent an average of the data from the duplicate 

sets. Appendix A lists the raw data and standard deviations associated with these average data. 

FromFigure 5.4, the results showthat during the first week ofbioremediation, aslightdrop 

in the Total PAHs was observed with all treatments, except the set involving nutrients amending 

at a PAH:N:P concentration ratio of 1:32:13. Note that the reason for dosing the nutrients at a 

1:32:13 ratio will be discussed in the following section.  Like the Scioto River data, the slight 

decrease in the Total PAHs was likely attributed to the heterogeneous distribution of the PAHs 

within the sediment.  Despite that decrease during the first week, the amount of Total PAHs 

increased during the third week prior to a slight drop bythe fourthweek.  The increase in the Total 

PAHs was likely again attributable to the production of natural biosurfactants associated with the 

increased levels of microbial activity stimulated by the nutrients dosing.  The addition of the 

activated sludge and nutrients at a PAH:N:P concentration ratio of 100:20:5 did not enhance the 

degradationof the PAHs.  Since the seeding of this bacterial source into the Scioto River sediment 

did not result in an improvement in PAH removal, this suggests that the reactor environment was 

not suitable for the seeded bacteria to grow within the reaction times evaluated. 

The results shown in Figure 5.4 reveal that the set involving nutrients addition at a dose of 

1:32:13 provided slow but consistent biodegradation of Total PAHs within the sediment (in 

comparisonwiththe biotic control).  The TOC content in the Lake Superior sediment was around 
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100,000 mg/kg (see Table 4.1).  This value is higher than the reported values for most sediments 

(around 7,500 mg/kg) (Zappiet al., 2000).  Based on this TOC value, there is a significant amount 

of organic constituents other than PAHs within this sediment.  Since the PAHs make up a small 

fraction of this high TOC, then dosing nutrients using a C:N:P ratio based on PAHs (i.e., C = 

[PAHs]) was believed to be too small.  The rationale was that the high TOC likely contains a 

portionoforganics that represents a significantly higher amount of additional substrate.  Therefore, 

the systemhas a muchhigherdemand for nutrients thanassociated withthe PAHs value alone.  The 

need for nitrate and phosphate increases with the total amount of degradable organic constituents 

present in the test system.  Thus, the nitrate and phosphate dosages were elevated over the PAH 

concentration-based dosing strategiesusedwiththe other test systems.  The data generated clearly 

support this hypothesis.  Clearly, this approach yielded steady removal of the PAHs from the 

sediment slurry. 

Figure 5.5 presents the Total PAHs results for the set involving the addition of activated 

sludge, nutrients, and Tween 80.  These data were segregated from the other data to better 

visualize the trend associated withTween80 addition.  The data reveal that the Tween 80 caused 

an increase in extractable PAHs over time. This was observed in the earlier experiments involving 

Tween80 additionduring the bioremediationscreening activities for the SciotoRiversediment (see 

Figure 5.1).  This increase in Total PAHs was likely attributable to the dosed surfactant greatly 

improving the extractability of the PAHs; plus, the facilitation of a more rapid deagglomeration of 

sediment particles resulting in a dramatic increase in surface area (and thus, extractionefficiency). 

The drop in Total PAHs after the 2nd week was believed to have resulted from the resulting 
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increase in bioavailability.  This effect was also observed by Harvey (1997) during the 

bioremediation of explosives contaminated soils.  Harvey (1997) indicated that the addition of 

Tween 80 increased the desorption of explosive compounds (i.e., TNT and RDX) from the soil; 

thereby, increasing analytical extractability. This increase observed by Harvey did later improve 

the rate and extent of TNT biodegradation. 

In terms of Light PAH removal (Figure 5.6), the trend observed with the biodegradation 

of the Light PAHs also followed the trend observed with the Total PAHs (Figure 5.5).  On the 

other hand, the results of the Heavy PAHs (Figure 5.7) show a decrease in Heavy PAHs during 

the first week of bioremediation for the control system, the sets involving activated sludge and 

nutrients and nutrients alone showing a less significant decrease in comparison to those observed 

with the Total PAHs data (Figure 5.4).  This indicates that the bioavailability of the Heavy PAHs 

was still very limited, due to their low water solubility.  Obviously, little benefit was observed with 

some of the systems evaluated. 

Figure 5.8 presents the Heavy PAHs results for set involving Tween 80 addition.  These 

data were segregated from the other data to better visualize the trend associated with Tween 80 

addition.  These data show that the increase in Total PAHs (Figure 5.5) was mainly associated with 

the Heavy  PAHs. Heavy PAHs are known to be hydrophobic and adsorb strongly onto soil 

surfaces; thus,limitingbioavailabilityand resultinginpoorbiodegradationrates (Mihelcic and Luthy, 

1987; Zappi et al., 1993).  This observation concurs with Volkering et al. (1998) in which the 

bioavailability of the PAHs and subsequent removalrate increased withthe addition of Tween 80. 

From this set of experiments, the addition of Tween 80 appears to have increased the amount of 
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Heavy PAHs in solution; thus, improving the rate and extent of Heavy PAH biodegradation. 

The biodegradation half-life of naphthalene, in soil and water mixture, under optimum 

aerobic conditions is reported to be three days (DanishEPA, 2002).  Based on these findings, the 

experiments were conducted over a four week period to allow sufficient time for significant 

naphthalene degradationto occur.  However, the duration of these experiments was shorter (four 

weeks) in comparison to other studies, such as Lauch et al. (1992), USEPA (1993), and Zappi 

et al. (1996).  These researchers found that the biodegradation-based half-life for PAHs having 

more than three rings to be greater than 30 days and more specifically, the half-life of 

benzo[a]pyrene, a four-ring, within acclimated reactors of about 22 days (Sims et al., 1989; Park 

et al., 1990). These findings indicate that longer treatment times than those used in these studies 

were required if complete removal of Total PAHs is desired.  However, since the objective was 

simply to screen candidate treatment conditions, it was decided to end the experiments early to 

allow for focus to be placed on process integration experiments.  In general, only the sets with 

nutrients amended at a PAH:N:P dosing ratio of 1:32:13 exhibited Light PAH biodegradation of 

about 35%, which is still much lower than the bioremediation success reported by Zappi et al. 

(1993) for Light PAHs who observed a removal of 89% for the Light PAHs within a 22 day 

period. However, it is important to point out that Zappi et al. (1993) worked withanupland soil 

which was chemically much less complex than a sediment. 
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Impact of Tween 80 and Glucose Amending on PAH Degradation 

The objective of this test series was to further evaluate the effect ofTween80 dosing and 

evaluate the effect of glucose dosing on the removal of PAHs from the Lake Superior sediment. 

Note that the duration of these experiments was 20 weeks. The longer incubation times were 

selected based on the results of the previously discussed experiments.  The bacterial seed used in 

this testing was a culture of multi-ring PAH degraders prepared by Dr. Hamid Borazjani of the 

Department of Forest Products, MSU, for a treatment plant inWiggins, MS.  This plant is treating 

low levels of PAHs in a groundwater influent. Additionally, all of the data plots presented herein 

for these experiments represent anaverage of the data fromthe duplicate set.  Appendix A lists the 

raw data and standard deviations associated with these average data. 

Figure 5.9 presents the pH levels within the flasks over the course ofthis test.  The results 

show that the pH for the set with Tween 80 addition remained lower than the set with glucose 

addition. After 14 weeks of repetitive Tween 80 additions, the pH dropped below six, which is 

out of the optimum pH range for bioremediation (Metcalf and Eddy, 1991; Englert et al., 1993). 

This observation concurs with the previous experiments involving Tween 80, indicating the 

generationoforganic acids as by-products ofTween80biodegradation.  The pH was not adjusted 

in order to evaluate the effect of pH and unadjusted Tween 80 addition on the Heavy PAH 

biodegradation. 

Figure 5.10 presents the dissolvedoxygenconcentrations withinthe slurriesover the course 

of this test. The dissolved oxygen levels for the set involving Tween 80 addition dropped below 

2 mg/l during Weeks 6, 14, 20, and 21.  However, these DO results show that the systems 

https://Figure5.10
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generally remained aerobic over the entire study period. 

Figure 5.11 presents the TotalPAHs degradationwithin the slurries over the course of this 

test. The results show that there was a significant increase in the Total PAHs in both sets during 

the mid point of the test prior to a steady decrease toward the end of the test.  Despite the overall 

increase in the extractable Total PAHs, the results show that during the first three weeks of 

biotreatment, a drop in Total PAHs was observed with both sets.  A significant increase in the 

concentration of the PAHs was observed for both sets of experiments by Week 4. This trend is 

similar to those observed in the earlier experiments.  This finding indicates that the increase in 

extractable PAHs is likely due to natural biosurfactants produced from the increased levels of 

bacterial activity and not the addition of surfactant.  Since Tween 80 is highly biodegradable, as 

is glucose, the benefits ofadding these high levels ofco-metabolite likely resulted in the production 

of natural biosurfactants. The results also show that the drop in the pH inthe set involvingTween 

80 after 14 weeks did not appear to affect the ability of the microorganism to biodegrade the 

PAHs. Obviously, 20 weeks was not sufficient to remove the PAHs to below detection limits. 

However, a removal of over 80% was achieved. 

Figure 5.12 presents the Light PAHs degradationwithin the slurries over the course of this 

test.  The results show that Light PAHs degradation generally followed the trend observed with the 

Total PAH degradation.  The set involving Tween 80 addition performed better than the set 

involvingglucose additionwithrespect to Light PAHs biodegradation; thereby, possibly indicating 

that some removal was associated with the surfactant properties of the Tween 80.  It is also 

possible that the slightly better performance of the Tween 80 addition may be attributable to the 

https://Figure5.12
https://Figure5.11
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fact that Tween 80 is a much more complex substrate than glucose; thus, it stimulated enzyme 

production better suited for Light PAH degradation. Surprisingly, the biodegradationof the Light 

PAHs appeared to be slower than the Heavy PAHs (Figure 5.13).  Light PAHs have been 

documented to be relatively easy to degrade (Bauer and Capone, 1985; Banerji et al., 1995) in 

comparison with Heavy PAHs, but in this study, they appeared to have persisted longer than the 

Heavy PAHs.  It is believed that with this study, the high levels of Tween 80 and glucose in the 

reactors offered a better carbon source than the Light PAHs; thus, the biodegradationof the Light 

PAHs was hindered.  Microorganisms have been documented to selectively degrade a more 

biodegradable compound (e.g., glucose) over other less biodegradable compounds (e.g., Light 

PAHs) (Jing, 1998). Thus, both the Tween80 and glucose were chosenfor biodegradation over 

the Light PAHs. As a result of this selective degradation, only the Heavy PAHs were degraded 

through the process of co-metabolism that appeared to stimulate naturalbiosurfactant production. 

Figure 5.13 presents the Heavy PAHs removal within the slurries over the course of this 

test. The results show that the overall Heavy PAH degradation followed the trend observed with 

both the Total and Light PAHs degradation.  The increase in the extractable Heavy PAHs is less 

pronounced in comparison to the Light PAHs.  The set with glucose addition shows a better 

removal rate of the Heavy PAHs in comparison with the set involving Tween 80 addition.  These 

data tend to contradict the Light PAH data in that glucose provided better removalthanthe Tween 

80. Additionally, it is expected that Tween80 would have a higher extent and rate ofHeavy PAH 

removal due to its surfactant characteristic.  Total removal of the Heavy PAHs was observed with 

the glucose amended set after 15 weeks of treatment.  It took the Tween 80 amended reactors 4 
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weeks longer to reach theselevels.  Research has shown that the Heavy PAHs can be biodegraded 

through the process of co-metabolism with glucose being the sole carbonsource (Kazunga et al., 

2001). 

Summary of the Biotreatment Results 

In the BioavailabilityExperiment, it was discovered that the biodegradationofnaphthalene 

in the Lake Superior sediment was hindered due to low bioavailability of naphthalene in the 

aqueous phase and not the enzymatic capability of bacteria for PAH degradation.  During the 

biotreatment of the Scioto River Sediment, it was observed that Tween 80 addition enhanced the 

bioavailability of both the Light and Heavy PAHs. The results showed that the addition of highly 

biodegradable substrates, such as Tween 80 and glucose, appeared to have enhanced the Heavy 

PAH biodegradation in the sediment, but maybe hindered Light PAH biodegradation. 
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Table 5.1. Results of the Bioavailability Experiments (Performed in duplicate) 

Naphthalene degraders + 25 mg/l Naphthalene 

Liquid Phase Analysis 

Time, Hour Amount of Naphthalene, mg/l Standard Deviation 

0 17.10 7.72 

1.6 2.44 0.27 

70.1 ND -

Naphthalene degraders + 31.25 gram of dry sediment: 

Liquid Phase Analysis 

Time, Hour Amount of Naphthalene, mg/l Standard Deviation 

0 2.81 0.60 

1.6 ND -

70.1 ND -

Soil Phase Analysis 

Time, Hour Amount of Naphthalene, mg/l Standard Deviation 

0 284.73 42.62 

1.6 219.17 36.06 

70.1 244.17 94.67 

Note: 
- ND: Below detectable limit 
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Table 5.2. Soil pH during Slurry Phase Bioremediation of the Scioto River Sediment 
(Performed in duplicate) 

Sets Weeks 

0 1 2 3 4 

Biotic Control 7.58 7.36 7.68 7.39 7.54 

100:20:5 7.58 6.67 7.37 7.16 7.32 

Bio + 100:20:5 7.58 6.65 7.39 7.14 7.30 

Bio + 100:20:5 : Tween 80 7.58 6.07 6.08 5.86 5.66 

Notes: 
- Bio indicates activated sludge addition on Day 1 
- 100:20:5 indicates PAH:N:P ratio 
- Tween 80 indicates 3 % by weight of Tween 80 addition once a week (dry sediment basis) 
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Figure 5.1. Bioremediation Results for Total PAHs in Scioto River Sediment 

Notes: 
- AS.: Bioaugmentation with activated sludge from the return line of a local wastewater 
treatment plant 
- 100:20:5 represents PAH:N:P ratio 
- T80: Tween addition at 0.5% (w/w) the first week and 0.25% (w/w) the following 
weeks 
- These tests were conducted in duplicate 
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Figure 5.2. Bioremediation Results for Light PAHs in Scioto River Sediment 

Notes: 
- AS.: Bioaugmentation with activated sludge from the return line of a local wastewater 
treatment plant 
- 100:20:5 represents PAH:N:P ratio 
- T80: Tween addition at 0.5% (w/w) the first week and 0.25% (w/w) the following 
weeks 
- These tests were conducted in duplicate 
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Figure 5.3. Bioremediation Results for Heavy PAHs in Scioto River Sediment 

Notes: 
- AS.: Bioaugmentation with activated sludge from the return line of a local wastewater 
treatment plant 
- 100:20:5 represents PAH:N:P ratio 
- T80: Tween addition at 0.5% (w/w) the first week and 0.25% (w/w) the following 
weeks 
- These tests were conducted in duplicate 
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Figure 5.4. Bioremediation Results for Total PAHs in Lake Superior Sediment 

Notes: 
- AS.: Bioaugmentation with activated sludge from the return line of a local wastewater 
treatment plant 
- 100:20:5 and 1:32:13 represent PAH:N:P ratios 
- These tests were conducted in duplicate 
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Figure 5.5. Bioremediation Results for Total PAHs in Lake Superior Sediment 

Notes: 

A S1+100:20:5+T80 

- AS1: Bioaugmentation with activated sludge from a return line of a swine waste project 
- 100:20:5 represents PAH:N:P ratio 
- T80: Tween addition at 0.5% (w/w) the first week and 0.25% (w/w) the following 
weeks 
- These were conducted in duplicate 
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Figure 5.6. Bioremediation Results for Light PAHs in Lake Superior Sediment 

Notes: 
- AS.: Bioaugmentation with activated sludge from a return line of a local wastewater 
treatment plant 
- AS1: Bioaugmentation with activated sludge from a return line of a swine waste project 
- 100:20:5 and 1:32:13 represent PAH:N:P ratios 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following 
weeks 
- These tests were conducted in duplicate 
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Figure 5.7. Bioremediation Results for Heavy PAHs in Lake Superior Sediment 

Notes: 
- AS.: Bioaugmentation with activated sludge from a return line of a local wastewater 
treatment plant 
- 100:20:5 and 1:32:13 represent PAH:N:P ratios 
- These tests were conducted in duplicate 
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Figure 5.8. Bioremediation Results for Heavy PAHs in Lake Superior Sediment 

Notes: 
- AS1: Bioaugmentation with activated sludge from the return line of a swine waste 
project 
- 100:20:5 represents PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following 
weeks 
- These were conducted in duplicate 
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Figure 5.9. pH Measurements for Bioremediation Experiments Involving Tween 80 and 
Glucose Additions 

Notes: 
- Glucose : 1,000 mg/l glucose addition once a week 
- Tween 80 : 3 % by weight of Tween 80 addition once a week 
- These were conducted in duplicate 
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Figure 5.10. Dissolved Oxygen Readings for Bioremediation Experiments Involving 
Tween 80 and Glucose Additions 

Notes: 
- Glucose : 1,000 mg/l of glucose addition once a week 
- Tween 80 : 3 % by weight of Tween 80 addition once a week 
- These were conducted in duplicate 
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Figure 5.11. Bioremediation Results for Total PAHs in Lake Superior Sediment 

Notes: 
- Glucose: 1,000 mg/l glucose addition once a week 
- Tween 80 : 3% (w/w) Tween 80 addition once a week 
- These were conducted in duplicate 
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Figure 5.12. Bioremediation Results for Light PAHs in Lake Superior Sediment 

Notes: 

Tween 80 
Glucose 

- Glucose: 1,000 mg/l glucose addition once a week 
- Tween 80 : 3% (w/w) Tween 80 addition once a week 
- These were conducted in duplicate 
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Figure 5.13. Bioremediation Results for Heavy PAHs in Lake Superior Sediment 

Notes: 

Tween  80 
Glu co s e 

- Glucose: 1,000 mg/l glucose addition once a week 
- Tween 80 : 3% (w/w) Tween 80 addition once a week 
- These were conducted in duplicate 
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CHAPTER VI 

PHASE I: CHEMICAL OXIDATION SCREENING RESULTS 

This series of shake-flask experiments was performed on Lake Superior and Scioto River 

sediments to determine the impact ofchemicaloxidationprocesses, such as ozone, peroxone, and 

Fenton’s Reagent, onthe removalof PAHs within the Lake Superior sediment.  Additionally, the 

fate of hydrogen peroxide within these chemically complex sediments systems was studied. 

Treatment using Ozone and Peroxone 

The objective of these experiments was to evaluate the impact of ozone and peroxone on 

the removal of PAH within untreated Lake Superior sediment (i.e., no biotreatment).  Note that 

all data represented in x-y plots within this chapter are actually an average of the duplicate sets. 

The raw data and standard deviations for all of the average data in this chapter are listed in 

Appendix B. 

Figure 6.1 presents the PAH degradation results achieved with ozone.  The results show 

that after two hours ofozonation, approximately 26% ofTotalPAHs were oxidized.  The success 

with ozone for contaminant removal was also observed by Wang (1999) during the ozonation of 

soil contaminated with TPH. The author reported that 53% of the TPH in the soil was removed 

after four hours of treatment.  This finding also suggests that further removal of PAHs can likely be 

achieved withlonger ozonationtimes.  This is likely due to the availability of the Light PAHs in the 

110 
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aqueous phase for reaction withozone.  Light PAHs have a lower affinity for adsorption onto soil 

than heavier PAHs (Dzombak and Luthy, 1984). The removalof the Light PAHs was 27%.  On 

the other hand, the removal of the Heavy PAHs was 23%. 

After the success of the ozone, peroxone was applied for longer treatment times (i.e., 21 

hours). Figure 6.2 presents the PAH degradationresults achieved withperoxone.  The data show 

that the additionofhydrogenperoxide in the peroxone treatment provided significant degradation 

ofPAH within the first six hours in comparisonto the degradationobserved inozone experiments. 

The removal of the Total PAHs was 43.3%.  Light and Heavy PAH removals were 30.4% and 

72.9%, respectively.  This improved degradation of Heavy PAHs was likely attributable to the 

availabilityof these chemicals in the aqueous phaseforchemicaloxidation.  After that, the hydrogen 

peroxide dosing was increased from 62.5 mg/l to 500 mg/l, with the expectation that the rate of 

PAHs removal would increase. However, instead of enhancing the degradation, an increase in 

PAH concentrations was observed.  It is speculated that this increase in PAH concentrations is 

likely due to the attack of the additional hydroxyl radicals on the NOM, and thus, destabilizing the 

PAH-NOM adsorptionbonds resulting in an increase in extractable PAHs.  This phenomena was 

also observed by Kawahara et al. (1995) during the oxidation of PAH-contaminated soils using 

Fenton’s Reagent.  Additionally, it is further speculated that an inhibition effect of the PAHs 

degradation attributed to the scavenging effect of the hydrogen peroxide and scouring actionalso 

may have caused these results.  Hydrogen peroxide can be a hydroxyl scavenger competing with 

the PAHs forthe hydroxyl radicals; thus, reducing rate ofPAH degradationwithin the slurry(Hong 

et al., 1996).  Although, the actual cause is not known. However, it is noteworthy to point out that 
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by 18 hours of oxidation a dramatic decrease in PAHs is observed. 

Fate of Hydrogen Peroxide in Equilibrated Water Solutions 

The objective of this test was to examine the factors controlling the fate of hydrogen 

peroxide in the equilibrated water solutions.  The raw data and standard deviations for all of the 

average data presented in this section are listed in Appendix B. Table 6.1 lists heavy metals that 

were detected inboth the soil phase and liquid phase ofLake Superior sediment. The results show 

that the iron concentration was 70 mg/l and that manganese was not present in the liquid phase. 

This is a high levelof iron in terms of potential scavenging effects (Zappi et al., 2000).  Given this 

high amount of iron present, it was expected that reactions between the iron and H2O2 would 

provide a Fenton’s type mechanism resulting in PAH degradation during H2O2 addition. Among 

the six types ofheavy metals being analyzed in the soil phase, cadmium was not detected.  Copper, 

chromium, lead, zinc, and calcium were detected and present in the sediment at 42.4, 45.3, 64.9, 

149, and 10,200 mg/kg, respectively.  The amount of calcium in the sediment is below average 

compared to the reported values for most sediments (around 7,500 mg/kg) (Zappi et al., 2000). 

The amount of iron in the sediment was not tested because the calibration curve for iron was not 

available at the time of testing.  However, it is expected to be substantial given the amount detected 

in equilibrated water. 

Table 6.1 also lists the total heterotroph counts for the autoclaved and not-autoclaved 

water samples utilized in the hydrogenperoxide fate experiments.  The totalheterotrophcounts for 

the not-autoclaved equilibrated water sample was 20 CFUs/ml.  On the other hand, no 
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heterotrophic counts were found in the autoclaved equilibrated water sample and indicating that 

this water sample was free of bacteria. Since it was free frombacteria prior to the addition of the 

hydrogenperoxide addition, the hydrogenperoxide consumption in the liquid would be attributed 

to abiotic process via oxidation of the soluble matters (i.e., reduced cations, NOM, soluble 

organics, and etc). 

Figure 6.3 presents the results from experiments directed toward evaluating the fate of 

hydrogenperoxide within the equilibrated water samples of Lake Superior.  Research has shown 

hydrogen peroxide is able to oxidize soluble soil-derived matter (reduced cations, NOM, soluble 

organics, and etc.) in the liquid phase (Zappiet al., 2000).  From the data in Figure 6.3, hydrogen 

peroxide concentrations in the equilibrated water samples that were autoclaved was significantly 

reduced within the first 30 minutes, before leveling off to about 490 mg/L for the remainder of the 

test. The reactivity in the hydrogen peroxide is attributable to the oxidation of the soluble matter 

because of its rapid step-wise character. The results for the equilibrated water samples that were 

not autoclaved also show the same initial consumption of hydrogen peroxide within the first 30 

minutes as that observed withthe liquid sample that was autoclaved.  This indicates that the initial 

consumption was also largely due to the abiotic-derived oxidation of soluble matter in the liquid. 

After 30 minutes, a slow and steady degradation of the hydrogen peroxide concentrations in the 

biologically active sample was observed.  There was 20 CFUs/ml of bacteria present in the 

equilibrated water samples; thus, this consumption is attributable to bacterial degradation of the 

hydrogenperoxide.  Catalase is an enzyme that is produced as a defense mechanism when bacteria 

are exposed to hydrogenperoxide, to minimize the damage done to the cell (Zappi et al., 2000). 
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When catalase comes in contact with the hydrogen peroxide, it converts the hydrogen peroxide 

into water and oxygen at a very fast rate (Zappi et al., 2000).  In general, the hydrogen peroxide 

consumption in the equilibrated water samples appears to be largely due to abiotic reactions via 

oxidation of the soluble matter within the sediment. 

Figure 6.4presents the hydrogenperoxide consumptionrate (zero-order) obtained for the 

equilibrated water samples that were not autoclaved (using data from Figure 6.3).  As stated 

before, there were significant amount of metals present in the sediment (see Table 6.1).  It is 

believed that addition of fresh water after each equilibration step breaks apart clumps of soil 

particles, exposing more soil surface area causing more reduced cations todesorb intothe aqueous 

phase which further degrades the hydrogen peroxide.  The results in Figure 6.4 show that the 

hydrogen peroxide consumption rate increases within the first four equilibration steps prior to a 

slight decrease on the fifthstep.  The increase in degradation of the hydrogen peroxide in the liquid 

phase was due to freshly desorbed cations and humic acids that were easily released within the 

sediment .  On the other hand, the decrease suggests that the rate of desorbed cations was slowing 

down. 

Fate of PAHs and Hydrogen Peroxide within the Sediment 

The objectives of these experiments are to determine the factors controlling the fate of 

hydrogenperoxide in the sediment and the impact ofsequentialhydrogenperoxide dosingonPAH 

fate within the sediment.  The raw data and standard deviations for all of the average data 

presented in this section are listed in Appendix B. 
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1,000 ppm H2O2 Experiments 

Figure 6.5 presents the zero order rate constant results of experiment directed toward 

evaluating the fate of hydrogen peroxide within the slurries.  The hydrogen peroxide concentration 

applied each time was 1,000 mg/L.  The results show that the highest consumption rate of 

hydrogen peroxide was observed after the first application. After three consecutive additions of 

hydrogen peroxide to the sediment, the hydrogen peroxide consumption rate appeared to 

decrease, in comparison to the first applied dose. Despite the decrease in the consumption rate, 

the hydrogen peroxide was still being degraded continuously over the entire course of this test (see 

Table 6.2).  This trend also was observed in the previous experiment examining the fate of 

hydrogen peroxide in equilibrated water solutions. It is believed that the high consumption rate of 

the hydrogen peroxide within the first three hydrogenperoxide applications was attributable to the 

oxidation by dissolved cations and humic acids that were easily released in the sediment. Then, 

the slow consumption rate of hydrogen peroxide after the third dosing application was primarily 

attributable to bacterial degradation. Pardiek et al. (1992) reported that the hydrogen peroxide 

concentrationbetween10 and 1,000 mg/lrange inhibits bacterialgrowth, but does not destroy the 

microorganisms. This finding suggests that higher amounts of hydrogen peroxide are required to 

destroy the microorganisms capable ofproducing catalase before significant reductioninbiological 

decay can be observed. 

Figure 6.6 presents PAHs degradation results achieved with the 1,000 mg/l hydrogen 

peroxide dosing.  These data show an increased in PAH concentrations after dosing with the 

hydrogenperoxide.  This increase is likely attributed to the weakening of the adsorption bonds and 



www.manaraa.com

        

           

      

         

      

           

  

     

           

   

         

 

      

     

       

      

               

116 

erosion of soil agglomerates due to the scouring actioncaused by the foaming and agitation.  Both 

of these act uponthe extractionefficiencyof the analytical process.  This effect is clearly illustrated 

by comparing the change in both Light and Heavy PAH concentrations before and after testing. 

The Light PAHs are not as strongly adsorbed onto the soil particles as are the Heavy PAHs. 

Degradation of the adsorption bonds clearly increase the extractability of the Heavy PAHs with 

little impact on the Light PAHs noted. 

10,000 ppm H2O2 Experiments 

Figure 6.7 presents the zero order rate constant results of experiment directed toward 

evaluating the fate of hydrogen peroxide within the slurries using a 10,000 ppm H2O2 dose. This 

set of experiment was conducted similar to the previous experiments, except that the dosing 

concentration of the hydrogen peroxide was 10,000 ppm instead of 1,000 ppm. 

FromFigure 6.7, the highest consumptionrate of hydrogenperoxide was observed during 

the first three applications.  After several consecutive additions of hydrogen peroxide to the 

sediment, the hydrogenperoxide consumptionrate appears to decrease, in comparison to the first 

and third dosing step.  Despite the decrease in the consumption rate, the hydrogen peroxide was 

still being degraded continuously throughout testing (see Table 6.3).  This trend also was observed 

in the previous experiment involving the 1,000 mg/lhydrogen peroxide dosing, suggesting that the 

consumptionofhydrogenperoxide also could be attributed to the combined effect ofbothabiotic 

and biotic degradation.  It has been reported that hydrogen peroxide is also capable ofdegrading 

organic matter (i.e., humic acids) and oxidizing reducedcations (i.e.,Feand Cu) (Yuteriand Gurol, 
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1991; Zappi et al., 2000). These findings indicate that the consumptionof the hydrogen peroxide 

was likely due to the combinationofcatalase degradationand the oxidationof the reduced cations 

and organic matter which are both present in the sediment (see Table 6.1). 

Figure 6.8 presents the PAHsdegradationresults achieved withthe 10,000 mg/lhydrogen 

peroxide dosing. The Light, Heavy, and Total PAHs results show that the addition of hydrogen 

peroxide at 10,000 mg/lhad the similar effect on the removalofPAHs as observed with the 1,000 

ppmdose.  However, the final amount of Heavy PAHs for this set involving 10,000 ppm hydrogen 

peroxide addition is slightly lower than the amount observed in the set involving the 1,000 ppm 

hydrogenperoxide addition.  The extent of Light, Heavy, and Total PAHs degradation appears to 

increase withincreasinghydrogenperoxide dosing concentration.  This is expected since the higher 

hydrogen peroxide dose inputs more oxidation capability into the test system. 

100,000 ppm H2O2 Experiments 

This section involves the discussion of results of the experiments directed towards the 

evaluation of the fate of hydrogen peroxide within the slurries (autoclaved and not-autoclaved 

sediment samples) using a 100,000 ppm H2O2 dose.  The total heterotrophic counts for the 

sediment sample that was not-autoclaved was 4,889 CFUs/g (see Table 6.1).  No heterotrophic 

counts were found on the sediment sample that it was autoclaved, indicating that was free from 

bacteria prior to the addition of hydrogen peroxide (see Table 6.1).  Again, the sediment was 

autoclaved at 121oC and 15 psi. This indicates that any hydrogen peroxide reactivity within the 

sediment would likely be attributed to abiotic process via the oxidation of reduced cations (i.e., 
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ferrous ion and copper ion) present in the sediment. 

Figure 6.9 presents the results of an experiment directed toward evaluating the fate of 

hydrogen peroxide within the slurries.  During the treatment period between 41 and 83 hrs, the 

sediment that was autoclaved exhibited a slightly higher hydrogen peroxide consumption than the 

sediment that was not autoclaved.  After several repetitive additions of hydrogen peroxide, the 

hydrogen peroxide consumption for the sediment that was autoclaved showed a slightly slower 

reactivity in comparison to the sediment that was not autoclaved.  However, since testing was not 

performed to observe the tailing ofdegradation, anattempt at separating mechanisms of hydrogen 

peroxide degradation (biotic vs. abiotic) cannot be made.  Despite this slight decrease in 

consumption rate, the hydrogen peroxide was still being veryrapidly degraded.  The total organic 

carbonconcentrationrecorded for this sediment is approximately 100,000 mg/kg(see Table 4.1), 

which is higher than an average value of around 7,500 mg/kg for most sediments (Zappi et al., 

2000). Thus, it is believed that the high reactivity of the hydrogen peroxide was attributed to the 

oxidation of the humic acids and reduced cations found in the sediments.  Similar phenomena were 

observed by Zappi et al. (2000) who noticed the reactivity of the hydrogen peroxide in the 

equilibrated water samples that contained higher levels of humic acids thanfor those samples with 

much lower TOC levels. 

Figure 6.10 presents the Light, Heavy, and TotalPAHs degradation results achieved with 

the 100,000 mg/l hydrogen peroxide dosing. It is interesting to note that there was an increase in 

the level of extractable Total PAHs after the autoclave process. Research has shown organic 

matter converts into carbon dioxide and water at high temperature conditions (Debellefontaine et 

https://Figure6.10
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al., 1996). This finding suggests the PAH-organic adsorption bonds were likely degraded under 

the extreme heat of the autoclave process. Nonetheless, after several consecutive additions of 

hydrogen peroxide, 72% of the Total PAHs was degraded in the sediment that was autoclaved. 

Clearly, the degradationof the adsorptionsites provided an increase in the availabilityof the PAHs 

for chemicaloxidation.  This finding suggests the significant consumption of the hydrogen peroxide 

was likely due to the oxidationof the PAHs.  On the other hand, the data for the sediment that was 

not autoclaved did not showdegradationofPAHs after the hydrogen peroxide treatment, yielding 

speculation that adsorptive-based mass transfer limitations greatly impacted the ability of the 

oxidizer to degrade the PAHs within the sediment. 

The results (Figure 6.10) also show that 21% of the Light PAHs were removed from the 

sediment that was not autoclaved; meanwhile, 16% of the Light PAHs were removed from the 

sediment that was autoclaved.  In terms of the removal of Heavy PAHs, the significant increase in 

the level of extractable Total PAHs for the sediment that was autoclaved was mainly the Heavy 

PAHs.  No degradation of Heavy PAHs was observed for the sediment sample that was not 

autoclaved.  However, the final amount of Heavy PAHs for this set involving 100,000 ppm 

hydrogenperoxide additionis slightly lower thanthe amount observedin the set involving the 1,000 

or 10,000 ppmhydrogenperoxide addition.  On the other hand, the Heavy PAHs degradation in 

the sediment that was autoclaved sediment was 81%.  Thus, a substantially higher Heavy PAHs 

removal was observed with the sediment that was autoclaved.  Again, this trend was likely 

attributable to the availability of these chemicals in the aqueous phase for reaction with hydrogen 

peroxide. 
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Treatment using Fenton’s Reagent 

25K-10:1 Ratio and 100K-10:1 Ratio Experiments 

Based on the success of the previous experiments on removing some of the PAHs from 

the sediment, a series of more refined applications of Fenton’s Reagent were attempted.  The 

objective of this set of experiments was to determine the impact ofFenton’s Reagent onPAH fate 

within the sediment.  Note that these data represent an average of duplicate sets. The raw data and 

standard deviations for all of the average data are listed in Appendix B.  The applied Fenton’s 

Reagent dosageswere25,000mg/lhydrogenperoxide/2,500 mg/lferrous sulfate(25K-10:1 ratio) 

and 100,000 mg/l hydrogen peroxide/10,000 mg/l ferrous sulfate (100K-10:1 ratio). On the 4th 

dosing, a concentrated ferrous sulfate solution prepared for the 100K-10:1 ratio reactors was 

accidentally added to one of the 25K-10:1 ratio reactors; thus, both the replicates were spiked 

with10,000 mlferrous sulfate.  After 24-hour equilibration time, 100,000 mg/l hydrogen peroxide 

was added to both replicates.  From that point on, the applied dosing concentrations of hydrogen 

peroxide and ferrous sulfate for the 25K-10:1 ratio experiments were increased to 100,000 mg/l 

and 10,000 mg/l, respectively. 

Figure 6.11 presents the Total PAHs degradation achieved with Fenton’s Reagent. The 

results show that TotalPAHs degradationin the 100k-10:1 ratio experiments was relatively better 

in comparison to the Total PAHs degradation observed in the 25K-10:1 ratio experiments.  A 

slight increase inTotalPAHs within the sediment was observed forthe 25K-10:1 ratio experiments 

prior to a decrease after the fourthdosing.  This increase was likely attributable to hydroxyl radical 
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oxidationof the NOM whichdestabilized the PAH-NOMadsorptionbondsresultinginanincrease 

in the extractable PAHs within the sediment.  As mentioned before, the dosing concentration of 

Fenton’s Reagent for the 25K-10:1 ratio experiments was accidentally increased to 100,000 mg/l 

and 10,000 mg/l on the fourth dosing and at the same time, the degradation of PAHs was also 

observed. This is expected since higher Fenton’s Reagent dose inputs more oxidation capability 

into the test system. 

From Figure 6.12, the degradation of Light PAHs followed the trend observed with the 

degradation of Total PAHs (see Figure 6.11).  Additionally, the increase in Total PAHs amount 

during the fourth dosing applicationfor the bothsets ofexperiments was mainlydue to the increase 

in Light PAHs amount within the sediment. This phenomena was attributable to the increase of 

extractable PAHs via oxidation of PAH-NOM adsorption bonds. 

From Figure 6.13, the results show that the degradation of Heavy PAHs was slightly 

greater in the 100K-10:1 ratio experiments thanthe 25K-10:1 ratio experiments.  For the 100K-

10:1 ratio experiments, Heavy PAHs degradation was observed after the first dosing application. 

The Heavy PAHs degradation was continuously degraded with further additions of Fenton’s 

Reagent. A slight increase in the Heavy PAHs was observed during the fourth dosing application 

of the Fenton’s Reagent prior to complete removal of the Heavy PAHs during the fifth addition. 

For the 25K-10:1 ratio experiments, Heavy PAHs degradationbecame more aggressive after the 

accidental increase ofFenton’sReagent dosingconcentration(25K-10:1 ratio experiments) during 

the fourth dosing. After seven consecutive additions of Fenton’s Reagent to the slurry, complete 

removal of Heavy PAHs within the sediment was observed. 
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Overall, 69% and 81% of the Total PAHs were removed from the 25K-10:1 ratio and 

100K-10:1 ratio experiments, respectively.  The degradation of the Light PAHs was 55% and 

73% for the 25K-10:1 ratio and 100K-10:1 ratio experiments, respectively.  On the other hand, 

Heavy PAHs were not detected after the 5th and 7th dosing for the 100K-10:1 ratio and 25K-10:1 

ratio experiments, respectively. 

In general, the PAH degradation in the sediment is more aggressive and greater in the 

100K-10:1 ratio experiments in comparison with the 25K-10:1 ratio experiments. The Light 

PAHs degradationappeared to be slower than the Heavy PAHs. The Heavy PAHs degradation 

was faster with the 100K-10:1 ratio experiment. However, the experiment using lower amounts 

of hydrogen peroxide and ferrous sulfate accomplished the same removal of the Heavy PAHs 

(25K-10:1 ratio experiment) as the higher dosed system.  Thus, the addition of Fenton’s Reagent 

at lower concentrations (25K-10:1 ratio experiment) was comparably as effective and more 

economical than the higher dosed condition (100K-10:1 ratio experiment).  This conclusion is 

based on the fact that same removalor enhancement efficiency was achieved for the PAHs inboth 

sets. 

Summary of the Chemical Oxidation Results 

In the ozone and peroxone experiments, the objectives were to determine the impact of 

ozone and peroxone on PAHs.  Ozone was found to result in PAH removal from the sediment. 

On the other hand, the addition of hydrogen peroxide in the peroxone process appeared to have 

increased the availability of the PAHs within the sediment via oxidation of the PAH-NOM 
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adsorption bonds. 

In the Fate of Hydrogen Peroxide in Equilibrated Water Solutions Experiments, the 

objective was to determine the factor controlling the hydrogen peroxide reactivity in the liquid 

phase.  It was discovered that the degradation of hydrogen peroxide in the liquid phase was likely 

due to abiotic process via oxidationofsoluble matter (i.e., reduced cations, NOM, and etc.) with 

a tailing effect that was observed is attributed to biotic reactions. 

From the Fate of Hydrogen Peroxide within the Sediment Tests, the objectives were to 

determine the fate ofhydrogenperoxide within the sediment and assess the impact of the hydrogen 

peroxide addition on the PAHs.  The results showed that the fate of the hydrogen peroxide was 

influenced by both soluble matter (e.g., NOM) and microbes via catalase degradation.  In terms 

of the PAH removal, PAHs degradation was observed in the set involving 100,000 ppm H2O2 

dosingconcentration(autoclavedsediment)and limitedremovalobserved for the sediment that was 

not autoclaved. However, the Total PAHs after the addition of hydrogen peroxide is lower than 

the Total PAHs observed with the 1,000 ppm and 10,000 ppm H2O2.  This indicates that the 

removal of TotalPAHs is slightly better in the set 100,000 ppm in comparison to the 1,000 ppm 

or 10,000 ppm H2O2. 

In the Fenton’s Reagent experiments, the objective was to investigate the impact of 

Fenton’s Reagent addition on PAHs. The results showed that the addition of Fenton’s Reagent 

at higher dosing concentration (100,000 ppm H2O2 / 10,000 ppm Fe2+) did not  improve the 

degradationofTotalPAHs within the sediment over the other set (25,000 ppmH2O2 / 2,500 ppm 

Fe2+) (see Figure 6.11). The Light PAHs degradation in both sets was  inhibited. This was likely 
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attributed to the unavailability ofthese chemicals for the oxidation.  In terms of Heavy PAHs, the 

additionofFenton’s Reagent withhigher dosing concentration(100,000 ppmH2O2 / 10,000 ppm 

Fe2+) yielded better performance in the removal of the Heavy PAHs within the sediment in 

comparison to the other set (25,000 ppm H2O2 / 2,500 ppm Fe2+) (see Figure 6.13). 

Nonetheless, the Heavy PAHs were not detected within the sediment after 7 applications of 

Fenton’s Reagent at 25,000 ppm H2O2 / 2,500 ppm Fe2+. Note that the dosing concentrationfor 

this set was accidentally increased to 100,000 ppm H2O2 / 10,000 ppm Fe2+ during the fourth 

dosing.  The cumulative total amount of hydrogen peroxide and ferrous sulfate utilized for the 

100,000 ppm H2O2 / 10,000 ppmFe2+ was 700,000 ppmand 70,000 ppm, respectively.  On the 

other hand, the cumulative total amount of hydrogen peroxide and ferrous sulfate utilized for the 

25,000 ppm H2O2 / 2,500 ppmFe2+ was 475,000 ppmand 47,500 ppm, respectively.  Since the 

same removalofHeavy PAHswasachievedwithbothdosing concentrations ofFenton’s Reagent, 

it was believed that the additionofFenton’s Reagent at increasing dosing concentration was more 

economical.  The cumulative total amount of hydrogen peroxide and ferrous sulfate utilized for the 

100,000 ppm H2O2 / 10,000 ppm Fe2+was 700,000 ppm and 70,000 ppm. 
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Table 6.1. Results of Heavy Metals Analysis and Total Heterotrophic Counts for the Liquid 
and Soil Phases, Lake Superior Sediment (Performed in triplicate) 

Liquid Phase 

Analysis1 Amount, mg/l 

Iron 70 

Manganese ND 

Soil Phase2 

Analysis Amount, mg/kg 

Cadmium ND 

Calcium 10,200 

Chromium 45.3 

Copper 42.4 

Lead 64.9 

Zinc 149 

Total Heterotroph Count Not-Autoclaved3 

Liquid Phase, CFUs/ml 20 

Soil Phase1, CFUs/g 4,889 

Notes: 
1Described in the Analytical Methods 
2Analyzed according to EPA 3051 
3No CFUs were observed in autoclaved set 
- ND: Below detectable limit 
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T a bl e 6. 2. E x p eri m e nt al R es ults f or t h e 1, 0 0 0 m g/l H y dr o g e n P er o xi d e R e a cti vit y E x p eri m e nt 
( P erf or m e d i n tri pli c at e) 

Tr e at m e nt 
ti m e, hr 

Li q ui d p h as e [ H 2 O 2 ], 
m g/l 

H 2 O 2  a d d e d, 
m g/l 

S [ H2 O 2 ], 
m g/l 

0 1 0 0 0 1 0 0 0 1 0 0 0 

2 4 5 1 0 0 0 2 0 0 0 

4 4 3 2 N o n e a d d e d N o n e a d d e d 

6 1 4 2 1 0 0 0 3 0 0 0 

2 4 1 2 1 0 0 0 4 0 0 0 

2 6 8 1 2 N o n e a d d e d N o n e a d d e d 

2 8 4 1 3 N o n e a d d e d N o n e a d d e d 

3 0 2 3 3 1 0 0 0 5 0 0 0 

4 8 3 0 1 0 0 0 6 0 0 0 

6 0 7 1 0 0 0 7 0 0 0 

8 4 1 3 N o n e a d d e d N o n e a d d e d 
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T a bl e 6. 3. E x p eri m e nt al R es ults f or t h e 1 0, 0 0 0 m g/l H y dr o g e n P er o xi d e R e a cti vit y 
E x p eri m e nt ( P erf or m e d i n tri pli c at e) 

Ti m e, hr Li q ui d p h as e [ H 2 O 2 ], 
m g/l 

H 2 O 2  a d d e d, 
m g/l 

S [ H2 O 2 ], 
m g/l 

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

2 7 0 1 7 N o n e a d d e d N o n e a d d e d 

4 4 2 8 3 N o n e a d d e d N o n e a d d e d 

6 2 1 6 7 1 0 0 0 0 2 0 0 0 0 

2 4 6 7 1 0 0 0 0 3 0 0 0 0 

2 6 7 4 6 7 N o n e a d d e d N o n e a d d e d 

2 8 3 6 1 7 N o n e a d d e d N o n e a d d e d 

3 0 2 1 6 7 1 0 0 0 0 4 0 0 0 0 

4 8 8 3 1 0 0 0 0 5 0 0 0 0 

6 0 8 3 1 0 0 0 0 6 0 0 0 0 

8 4 6 7 N o n e a d d e d N o n e a d d e d 
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T a bl e 6. 4. E x p eri m e nt al R es ults f or t h e 1 0 0, 0 0 0 m g/l H y dr o g e n P er o xi d e R e a cti vit y 
E x p eri m e nt ( P erf or m e d i n tri pli c at e) 

Ti m e, hr Li q ui d p h as e [ H 2 O 2 ], m g/l H 2 O 2  a d d e d, 
m g/l 

S [ H2 O 2 ], 
m g/l

A ut o cl a v e d N ot- A ut o cl a v e d 

0 1 0 0, 0 0 0 1 0 0, 0 0 0 1 0 0, 0 0 0 1 0 0, 0 0 0 

1 9 4, 0 0 0 6 5, 6 6 7 N o n e a d d e d N o n e a d d e d 

2 0 5, 8 3 3 8, 1 6 6 1 0 0, 0 0 0 2 0 0, 0 0 0 

2 1 7 5, 5 0 0 6 9, 0 0 0 N o n e a d d e d N o n e a d d e d 

2 3 4 4, 5 0 0 4 2, 8 3 3 N o n e a d d e d N o n e a d d e d 

4 1 5 0 0 4, 5 0 0 1 0 0, 0 0 0 3 0 0, 0 0 0 

4 2 5 6, 0 0 0 4 5, 1 6 7 N o n e a d d e d N o n e a d d e d 

4 3 4 1, 0 0 0 4 5, 5 0 0 N o n e a d d e d N o n e a d d e d 

4 4 2 6, 1 6 7 3 7, 8 3 3 N o n e a d d e d N o n e a d d e d 

4 5 1 0, 1 6 6 3 1, 0 0 0 N o n e a d d e d N o n e a d d e d 

4 6 4, 5 0 0 2 6, 5 0 0 N o n e a d d e d N o n e a d d e d 

6 1 5 0 0 5 0 0 1 0 0, 0 0 0 4 0 0, 0 0 0 

6 2 5 1, 5 0 0 4 8, 1 6 7 N o n e a d d e d N o n e a d d e d 

6 3 3 0, 8 3 3 3 8, 8 3 3 N o n e a d d e d N o n e a d d e d 

6 4 4, 6 6 6 1 7, 3 3 3 1 0 0, 0 0 0 5 0 0, 0 0 0 

8 3 5 0 0 8 3 3 1 0 0, 0 0 0 6 0 0, 0 0 0 

8 7 1 0, 1 6 6 1 7, 0 0 0 N o n e a d d e d N o n e a d d e d 

9 1 7 5, 0 0 0 7 0, 1 6 7 1 0 0, 0 0 0 7 0 0, 0 0 0 

9 2 4 5, 3 3 3 3 9, 1 6 7 N o n e a d d e d N o n e a d d e d 

1 0 5 4 2, 1 6 7 4 0, 5 0 0 1 0 0, 0 0 0 8 0 0, 0 0 0 
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T a bl e 6. 4. ( C o nti n u e d) 

Ti me Li q ui d p h as e [ H 2 O 2 ], m g/l H 2 O 2  a d d e d, 
m g/l 

S [ H2 O 2 ], 
m g/l

A ut o cl a v e d N ot- A ut o cl a v e d 

1 0 6 2 9, 3 3 3 2 4, 5 0 0 N o n e a d d e d N o n e a d d e d 

1 2 7 5 0 0 5 0 0 N o n e a d d e d N o n e a d d e d 

1 3 0 5 2, 1 6 7 4 7, 5 0 0 1 0 0, 0 0 0 9 0 0, 0 0 0 

1 3 2 3 2, 0 0 0 2 2, 8 3 3 N o n e a d d e d N o n e a d d e d 

1 3 5 1 1, 6 6 7 7, 5 0 0 N o n e a d d e d N o n e a d d e d 

1 4 9 1, 1 6 7 1, 1 6 6 1 0 0, 0 0 0 1, 0 0 0, 0 0 0 

1 5 0 6 7, 0 0 0 5 3, 8 3 3 N o n e a d d e d N o n e a d d e d 

1 5 1 4 9, 8 3 3 4 4, 6 6 7 N o n e a d d e d N o n e a d d e d 

1 5 2 4 2, 3 3 3 3 4, 3 3 3 N o n e a d d e d N o n e a d d e d 

1 5 4 2 7, 1 6 7 2 2, 3 3 3 N o n e a d d e d N o n e a d d e d 

1 7 3 1, 1 6 7 1, 0 0 0 1 0 0, 0 0 0 1, 1 0 0, 0 0 0 

1 7 4 4 5, 8 3 3 5 2, 3 3 3 N o n e a d d e d N o n e a d d e d 

1 7 5 4 0, 5 0 0 3 8, 6 6 7 N o n e a d d e d N o n e a d d e d 

1 7 7 3 2, 6 6 7 2 9, 5 0 0 N o n e a d d e d N o n e a d d e d 

2 2 2 5 0 0 5 0 0 N o n e a d d e d N o n e a d d e d 
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Light PAHs Heavy PAHs Total PAHs 

Figure 6.1. Ozone Treatment of PAHs in the Lake Superior Sediment 

Condition: 
- 3% (w/w) ozone at 2.5 scfh 

Note: 
- These were conducted in duplicate 
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Figure 6.2. Peroxone Treatment of PAHs in the Lake Superior Sediment 

Conditions: 
- 3% (w/w) ozone at 2.5 scfh 
- 65.5 mg/l H2O2 addition every two hours for the first six hours and 500 mg/l H2O2 
addition every three hours for the next 15 hours 

Note: 
- These were conducted in duplicate 
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Figure 6.3. Liquid Phase H2O2 Reactivity in Equilibrated Water Solution (Lake Superior   

      Sediment) 

Notes: 
- Control: 1,000 mg/l hydrogen peroxide solution 
- Not-Autoclaved: Equilibrated water solution (Ten replicates) 
- Autoclaved: Equilibrated water solution that was autoclaved at 121oC and 15 psi steam 
(Two replicas) 

22  
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Figure 6.4. Zero Order Rate Constant Results for the Fate of Hydrogen Peroxide in 
      Equilibrated Water Solutions Experiments (Not-autoclaved equilibrated water
      samples) 

Note: 
- These were conducted in two replicas 
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Figure 6.5. Hydrogen Peroxide Reactivity in the Lake Superior Sediment (1,000 mg/l) 
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Figure 6.6. Fate of PAHs in the Lake Superior Sediment as a Function of Hydrogen 
Peroxide Dosing (1,000 HP dosing concentration) 

Notes: 

Light PAHs 
Heavy PAHs 
Total PAHs 

- HP denotes the amount of hydrogen peroxide added, mg/l 
- These were conducted in two replicas 
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Figure 6.7. Hydrogen Peroxide Reactivity in the Lake Superior Sediment (10,000 mg/l) 
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Figure 6.8. Fate of PAHs in the Lake Superior Sediment as a Function of Hydrogen 
Peroxide Dosing (10,000 HP dosing concentration) 

Notes: 
- HP denotes the amount of hydrogen peroxide added, mg/l 
- These were conducted in two replicas 
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Figure 6.9. Hydrogen Peroxide Reactivity in the Lake Superior Sediment 
      (Treatment hr 41-83 and hr 149-222) 

Notes: 
- Not-Autoclaved: Untreated Lake Superior Sediment 
- Autoclaved: Lake Superior Sediment that was autoclaved at 121oC and 15 psi steam 
- 100,000 mg/l hydrogen peroxide was dosed on hr-41, hr-61, hr-149, and hr-173 
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Figure 6.10. Fate of PAHs in the Lake Superior Sediment as a Function of Hydrogen 
Peroxide Dosing (100,000 HP dosing concentration) 

Notes: 
- Not-autoclaved: Untreated Lake Superior sediment 
- Autoclaved: Lake Superior sediment that was autoclaved at 121oC and 15psi of steam 
- HP denotes the amount of hydrogen peroxide added, mg/l 
- These were conducted in two replicas 
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Figure 6.11. Fenton’s Reagent Treatment of Total PAHs in the Lake Superior Sediment 

Conditions: 
- 25,000 HP/ 2,500 Fe and 100,000 HP/ 10,000 Fe indicate dosing steps to the slurry 

Notes: 
- HP: H2O2 in mg/l and Fe: Fe2+ in mg/l 
- These were conducted in two replicas 
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Figure 6.12. Fenton’s Reagent Treatment of Light PAHs in the Lake Superior Sediment 

Conditions: 
- 25,000 HP/ 2,500 Fe and 100,000 HP/ 10,000 Fe indicate dosing steps to the slurry 

Notes: 
- HP: H2O2 in mg/l and Fe: Fe2+ in mg/l 
- These were conducted in two replicas 
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Figure 6.13. Fenton’s Reagent Treatment of Heavy PAHs in the Lake Superior 
        Sediment 

Conditions: 
- 25,000 HP/ 2,500 Fe and 100,000 HP/ 10,000 Fe indicate dosing steps to the slurry 

Notes: 
- HP: H2O2 in mg/l and Fe: Fe2+ in mg/l 
- These were conducted in two replicas 
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CHAPTER VII 

PHASE I: INTEGRATED EXPERIMENTS RESULTS 

Wang (1999) successfully integrated biotreatment and chemicaloxidationtechnologiesfor 

the removalof totalpetroleumhydrocarbons (TPHs)insoils.  The author reported an enhancement 

in the degradation of TPHs in the chemical primed slurry systems over the biotic control.  This 

findingindicates that the combinationofbothbiotreatment and chemicaloxidationtechnologiesalso 

can enhance the degradation of TPHs. For this reason, this next set of experiments was directed 

towards evaluating the enhancement that anoxidation step provides for the degradation of PAHs 

in previously biotreated sediment (Scioto River) using Fenton’s Reagent.  Note that the 

biotreatment results are presented and discussed inChapter V (see Biotreatment Results ofScioto 

River Sediment). This set of experiments was conducted in shake-flask and not bioslurry units. 

Integrated Experiments Results 

The objective of this set of experiments was to determine the impact of Fenton’s Reagent 

on PAH fate within the previously biotreated sediment.  The applied Fenton’s Reagent dosages 

were 20,000 mg/l H2O2/2,000 mg/l Fe2+, 50,000 mg/l H2O2/5,000 mg/l Fe2+, and 100,000 mg/l 

H2O2/10,000 mg/l Fe2+. Note that the hydrogenperoxide to ferrous ion concentration ratio in all 

of these formulation was 10 to 1. 

143 
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Foaming is a common phenomenon encountered during chemical oxidation treatments of 

soil containing elevated amounts of organic matter (i.e., bacteria and NOM) (Wang, 1999). 

Foaming problems usually result in the loss ofsoiland alsoreduce the contaminant-oxidizer contact 

time. Foaming problems were often encountered by Wang (1999) during the ozone, peroxone, 

and Fenton’s Reagent treatment of TPH contaminated soils.  In this study, foaming also was 

encountered during the ozone and peroxone experiments, especially during the first dosing 

application of hydrogen peroxide. Thus, to minimize foaming problems, which were expected to 

be encountered with adding high dosages of Fenton’s Reagent, the applied strategies were 

formulated so as to dose the Fenton’s Reagents in sequence and at increasing concentrations.  In 

addition, it was discovered from an earlier Fenton’s Reagent experiment (25K-10:1 ratio 

Experiments), that the application of Fenton’s Reagent in this manner appeared to be more 

effective in removing PAHs.  Note that these data represent an average of the duplicate sets. 

Appendix C presents the raw data along with the standard deviation associated with these data. 

Figure 7.1 presents the Total PAHs degradation results achieved with the addition of 

Fenton’s Reagent.  After the initial dosing of Fenton’s Reagent at 20,000 mg/l H2O2/2,000 mg/l 

Fe2+, a slight increase in Total PAHs was observed for two of the sets (AS+100:20:5 and 

AS+100:20:5+T80).  It is believed that this is due to the increase in the extraction efficiency caused 

by the oxidation of the NOM. This phenomenon also was reported by Kawahara et al. (1995), 

where the extractability for most of the PAHs was increased after the application of Fenton’s 

Reagent.  Further Fenton’s Reagent dosing provided steady degradation of the PAHs in the 

sediment.  The Total PAHs in most of the sets were not detected after seven applications. Of 
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particular note was the performance of the AS + 100:20:5 systemwhichhit non-detect levels after 

only two applications. 

From Figure 7.2, Light PAHs in the slurry for most of the sets were degraded within two 

dosing applications, except for the set involving Tween 80 addition.  The addition of Fenton’s 

Reagent at 20,000 mg/l H2O2/2,000 mg/l Fe2+ and 50,000 mg/l H2O2/5,000 mg/l Fe2+ provided 

steady improvement in the extraction efficiency of Light PAHs within the sediment due to the 

oxidationof the NOM.  Despite this increase, further addition of Fenton’s Reagent at 100,000 mg/l 

H2O2/10,000 mg/l Fe2+ resulted in significant degradation of Light PAHs.  The Light PAHs in all 

slurry systems were not detected by the 8th dosing. 

Figure 7.3 presents the phenanthrene degradationresults achieved withFenton’s Reagent. 

Phenanthrene is a 3 ring PAH which is considered a Light PAH. The data show that the 

phenanthrene was only detected in the sets involving Tween 80 addition.  Note that the amount of 

Light PAHs in the set involvingTween80 additionwas mainlyphenanthrene.  The first four dosing 

applications ofFenton’s Reagent yielded a steady increase ofphenanthrene in the sediment.  These 

data strongly suggests that this increase was due to the increase in extractionefficiencycaused by 

oxidation of the NOM. This phenomenon was observed in previous Fenton’s Reagent 

Experiments (25K-10:1 ratio and 100K-10:1 ratio Experiments) and Kawahara et al. (1995) 

during the oxidation of PAH using Fenton’s Reagent. 

FromFigure 7.4, the increase in the TotalPAHs (see Figure 7.1) was mainlyattributed to 

the increase in the concentration of the Heavy PAHs.  Most of the Heavy PAHs were removed 

after six dosing applications.  It is interesting to note that the amount of Light PAHs (see Figure 7.2) 



www.manaraa.com

            

       

     

                

  

      

   

       

  

        

           

              

   

146 

in the slurry for the set involvingTween80 was approximately half the amount of the Heavy PAHs 

to begin with and yet, the Light PAHs have persisted longer than the Heavy PAHs. 

Figure 7.5 presents the selected PAHs (e.g., fluoranthene and benzo[a]anthracene) 

degradation results achieved with Fenton’s Reagent.  Note that the selected PAHs are 4 ring 

PAHs, whichare known to be recalcitrant and have a lowsolubilityinwater; thus, resulting inpoor 

biodegradation.  These data show that the addition of Fenton’s Reagent resulted in an initial 

increase in these PAHs in the sediment.  This increase is also observed with the phenanthrene in 

the set involving Tween 80 addition; thus, it is believed that the steady increase in the amount of 

these PAHs in the sediment was due to the oxidation of the sorption bonds afforded by Fenton’s 

Reagent.  The extent of desorption for these selected PAHs provided by Fenton’s Reagent varied 

within the various slurry sets.  The rate of degradation for the selected PAHs also varied by slurry 

sets.  The degradation for the selected PAHs was observed right after the initial dosing application 

of Fenton’s Reagent.  The selected PAHs were not detected in any of the systems, after six dosing 

applications ofFenton’s Reagent.  In general, the results show an increase in the amount ofPAHs 

detected prior to total eventual removal. 

Figure 7.6 presents the results ofcombined biotreatment and chemicaloxidationtreatment 

of the PAHs in Scioto River Sediment.  The results clearly show that the addition of Fenton’s 

Reagent resulted in improved degradation of the PAHs within the sediment. 

Ingeneral, the additionofFenton’sReagent enhancedthe PAHremovalin the Scioto River 

sediment.  Total PAHs were not detected in any of the systems by eight dosing applications. The 

Tween 80 amending generally did not results in improved treatment based on the analytical 
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technique used.  However, the addition of the surfactant does appear to remove more contaminant 

mass possibly resulting in a better remediation in the key run, in spite of the obvious limitation 

presented by current analytical techniques.  A final note must be made in that Alexander et al. 

(1997) suggest that pollutant fractions not easily extracted do represent a contaminant mass likely 

not worthy of aggressive remediation because it is not available to pose an environment threat. 
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Figure 7.1. Fenton’s Reagent Treatment of Total PAHs for the Scioto River Sediment 

Conditions: 
- Step no. 1: 20,000 HP + 2,000 Fe 
- Step no. 2-3: 50,000 HP + 5,000 Fe 
- Step no. 4-8: 100,000 HP + 10,000 Fe 

Notes: 
- AS: Bioaugmentation with activated sludge from the return line of a local wastewater 
treatment plant 
- 100:20:5 represents PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following 
weeks 
- HP: Hydrogen peroxide concentration in mg/l 
- Fe: Ferrous sulfate concentration in mg/l 
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Figure 7.2. Fenton’s Reagent Treatment of Light PAHs for the Scioto River Sediment 

Conditions: 
- Step no. 1: 20,000 HP + 2,000 Fe 
- Step no. 2-3: 50,000 HP + 5,000 Fe 
- Step no. 4-8: 100,000 HP + 10,000 Fe 

Notes: 
- AS: Bioaugmentation with activated sludge from the return line of a local wastewater 
treatment plant 
- 100:20:5 represents PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following 
weeks 
- HP: Hydrogen peroxide concentration in mg/l 
- Fe: Ferrous sulfate concentration in mg/l 
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Figure 7.3. Fenton’s Reagent Treatment of Phenanthrene for the Scioto River Sediment 

Conditions: 
- Step no. 1: 20,000 HP + 2,000 Fe 
- Step no. 2-3: 50,000 HP + 5,000 Fe 
- Step no. 4-8: 100,000 HP + 10,000 Fe 

Notes: 
- AS: Bioaugmentation with activated sludge from the return line of a local wastewater 
treatment plant 
- 100:20:5 represents PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following 
weeks 
- HP: Hydrogen peroxide concentration in mg/l 
- Fe: Ferrous sulfate concentration in mg/l 
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Figure 7.4. Fenton’s Reagent Treatment of Heavy PAHs for the Scioto River Sediment 

Conditions: 
- Step no. 1:20,000 HP + 2,000 Fe 
- Step no. 2-3:50,000 HP + 5,000 Fe 
- Step no. 4-8: 100,000 HP + 10,000 Fe 

Notes: 
- AS: Bioaugmentation with activated sludge from the return line of a local wastewater 
treatment plant 
- 100:20:5 represents PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following 
weeks 
- HP: Hydrogen peroxide concentration in mg/l 
- Fe: Ferrous sulfate concentration in mg/l 
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Figure 7.5. Fenton’s Reagent Treatment of Selected PAHs for the Scioto River Sediment 

Conditions: 
- Step no. 1:20,000 HP + 2,000 Fe 
- Step no. 2-3:50,000 HP + 5,000 Fe 
- Step no. 4-8: 100,000 HP + 10,000 Fe 

Notes: 
- AS: Bioaugmentation with activated sludge from the return line of a local wastewater 
treatment plant 
- 100:20:5 represents PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following 
weeks 
- HP: Hydrogen peroxide concentration in mg/l 
- Fe: Ferrous sulfate concentration in mg/l 
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Figure 7.6. Results of Chemical Primed Bioremediation of PAHs for the Scioto River 
      Sediment 
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- AS: Bioaugmentation with activated sludge from the return line of a local wastewater 
treatment plant 
- 100:20:5 represents PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following 
weeks 
- HP: Hydrogen peroxide concentration in mg/l 
- Fe: Ferrous sulfate concentration in mg/l 

8 



www.manaraa.com

          

  

         

     

      

      

   

     

    

CHAPTER VIII 

PHASE II: RESULTS OF THE BIOTREATMENT AND INTEGRATED 

EXPERIMENTS WITHIN THE BIOSLURRY REACTORS 

Phase II: Bioslurry Experiments 

The bioslurry experiments were designed to demonstrate the feasability of chemical 

oxidation enhanced bioremediation of PAHs under more realistic reactor conditions (i.e., 5-L 

reactors).  The objectives of this experimental phase were to determine the optimum chemical 

priming conditions to achieve the best enhancement results and evaluate the net results on the 

reestablished bioremediation stage in terms of PAH removal using engineered reactor units that 

closely mimic actual expected large-scale bioreactor designs. The sediment utilized in these 

experiments was the Lake Superiorsediment.  Four different treatment conditions were conducted 

induplicate bioslurryreactors (a totalof eight units).  Appendix D presents the raw data along with 

the standard deviation associated with these data. 

Table 8.1. presents the oxygencontent within the headspace of the bioreactors measured 

over the course of the experiment. The results show that the oxygen content in the head space in 

all reactors was relatively stable around 20.9% (common oxygen level in air) over the course of 

this test. The set involving the additionof external carbon sources (e.g., glucose, sodium acetate, 

154 
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and Tween 80) showed two points at the end of the test that were relatively low likely indicating 

activity toward the higher levels of free carbon added of that time. These data indicate relatively 

normal headspace air quality. 

Table 8.2 presents the carbon dioxide content within the headspace of the bioreactors 

utilized in the bioslurry experiments.  Note that the carbon dioxide detection level for the gas 

analyzer was 0.1 ppm. The results show that the carbon dioxide was detected in the headspace 

of the bioreactors within the first week of the test.  The presence of carbon dioxide in the 

headspace inall the reactors indicates accelerated biologicalactivitywithin the sediment. After the 

first week, carbon dioxide was not detected for the next ten weeks or so in all reactors.  Carbon 

dioxide was observed again in the headspace of the bioreactor involving external carbon addition 

at Week 11 (Day 77).  The presence of carbon dioxide in the headspace corresponded to the 

additionof the Tween80 on Day74 of the experiments; thus, it is believed that carbondioxide was 

a by-product of Tween 80 degradation.  Note that the details of the Tween80 dosing strategy are 

discussed in a later segment. 

Table 8.3 lists the volatile organic carbon content within the headspace of the bioreactors 

measured over the course of the experiment.  The results show that volatile organic carbons 

concentration in the head space increase until the quarter-point of the experiment then started 

decreasing from that point on.  This trend generally follows that of the trend observed within the 

slurries (discussed later). 

Table 8.4 lists the results ofadding nitrate to the bioslurry.  The results show that the nitrate 

levels in the biotic controlincreased during the first week ofbioremediation.  Note that nitrate was 



www.manaraa.com

          

     

      

         

      

       

             

           

      

           

 

              

         

 

       

156 

not added to the biotic control system. This increase could be attributable to the heterogenous 

distribution of nitrate within this sediment.  The nutrients levels for other sets involving nutrients 

addition were higher than the control, as expected because of weekly additions. In general, the 

addition of nitrate in this study (1,000 mg/l) was higher than the addition of nitrate used in other 

studies, such as Wang (1999) and Zappiet al (1993).  The amount of nitrate added for this study 

was based on a C:N:P ratio of 100:20:5 (i.e., less than 100 mg/l).  The reasoning behind the 

elevated nitrate dosage is to support the high demand for nitrate that was considered to be 

associated with the PAHs value alone. Obviously, this demand was not as high as expected. 

Table 8.5 presents the results ofadding ortho-phosphate (o-p) to the bioslurry.  The results 

show that ortho-phosphate levels in the sets involving o-p addition (e.g., 400 mg/l o-p) were 

slightly higher than the o-p level in the controlset (no o-p was added) over the course of this test. 

Given that phosphate salt was added weekly, a relatively low buildup is observed indicating an 

appreciable utilization by the bacteria. 

Table 8.6 presents the results of adding ammonia to the bioslurry.  The results show that 

the ammonia levels in the control set were relatively the same as other sets involving nutrients 

addition.  Ammonia was added in the form of ammonium nitrate. These low levels of ammonia 

indicate significant biological uptake by the microbes present in the sediment and  in fact, these 

levels indicate possibly slightly reproducible levels due to the low ammonia levels measured over 

this test. This trend also was reported by Banerjiet al. (1995) during the bioremediationof TPH, 

PAHs, and VOCs contaminated sediments, where the authors observed that the ammonia levels 
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dropped to below 1 mg/l despite the ammonium chloride addition (e.g, 40 mg/l) over the course 

of the bioremediation. 

Figure 8.1 presents the results for tracking dissolved oxygen(DO) levels within the slurries 

over the course of this test phase. The DO levels in all of the reactors were low in the beginning 

of the experiment due to oxygen demand, but increased after being sparged with hydrocarbon 

filtered air through two of the three vents located at the bottom of the reactor.  The increase in 

dissolved oxygen in the slurrysystems onDays 9 and 53 of the experiments corresponded to the 

addition of distilled water to adjust the total solid to 30 % (w/w).  From the results, the DO in the 

slurries was maintained above 2 mg/l which is sufficient levels to sustain a healthy aerobic 

environments. The addition of nutrients, naphthalene degraders, and co-metabolites to selected 

reactors did not affect the DO in the slurry.  The significant drop in the DO for the set involving the 

additionofexternalcarbonsources corresponded to the addition Tween 80 at 5 % (w/w) onDay 

74 of the experiments.  Foaming occurred right after the Tween 80 was added.  The air supply 

volumetric flowrate was lowered from 10 scfh to 0.5 scfh after the addition ofTween80 (till end 

of this experiment) to prevent excessive foaming whichcould result in loss of the sediment fromthe 

reactors.  In order to be consistent, the volumetric flowrate for the other reactors not involving 

Tween 80 was also lowered to 0.5scfh.  The DO for one of the reactors involving Tween 80 

addition remained just below2 mg/l after the Tween 80 addition.  The significant drop in the DO 

onDay77 of the experiments(after Tween80 addition) is likely due attributable to the degradation 

of Tween 80. 
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Figure 8.2 presents the oxygen uptake rate (OUR) measurements for the bioslurry 

experiments. Initially, the OUR levels were high, but slowly decrease with times.  However, there 

were occasionalspikes in the OUR levels inall the reactors.  The increase in the OUR correspond 

to addition of nutrients, co-metabolites, and surfactant which obviously stimulated increased 

biological activities. The OUR data track nicely with the expected outcomes of the various 

amending strategies in that the units with co-metabolites and nutrients had higher OURs than the 

others. Additionally, the reactors with no amendments (biotic controls) clearly had lower OURs 

indicating a lesser degree of biological activity. In general, the OUR levels observed in this study 

are lower in comparison to the OUR levels observed during the bioremediation of VOCs, TPH, 

and PAH contaminated soils reported by Banerji et al. (1995). The authors reported OUR levels 

of above 8 mg/l-hr for the sets that were biologically active versus the 1 mg/l-hr levels observed 

during this study. 

Figure 8.3 presents the total suspended solids in the bioslurry experiments.  The total 

suspended solids remained fairly constant, about 30% by weight, in the reactors over the course 

of this testing.  The occasional increase in total suspended solids is attributed to loss of water from 

the reactors due to air sparging which were generally always followed by a decrease in the total 

solids attributable to the addition of fresh distilled water to maintain the total solid content around 

30%. 

Figure 8.4 presents the pH measurements for the bioreactor units. As can be seen upon 

review of the figure, the pH was maintained around 7.0 over the course of this test.  This pH range 

is optimal for biological activity (Metcalf and Eddy, 1991).  The results show that the pH for the 
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biotic control set remained relatively unchanged (around 7.1) over the course of the test.  On the 

other hand, the pH for the amended sets fluctuated out of the optimum pH range.  Thus, the pH 

was adjusted back to the optimal range (pH=7).  The addition of nutrients and external carbon 

sources (e.g., glucose, naphthalene, sodium acetate, and Tween80) appear to have an impact on 

pH depending on the nature of the amendment. 

Figure8.5presents the TotalOrganic Carbon (TOC) results for the bioslurryexperiments. 

Initially, the TOC was recorded around 100,000 mg/kg which is relatively higher than the TOC 

found in an average sediment (7,500 m/kg) (Zappi et al., 2000). Nonetheless, on Day 7 of the 

experiments, the average TOC values for all the reactors decreased to about 30,000 mg/kg and 

remained relatively constant over the course of the study. The significant drop in the TOC during 

the first week was partly attributed to the stripping of the volatile fraction of the organic sediment 

fractions.  Additionally, the stimulated biologicalactivityverylikely degraded a large portionof the 

TOC. 

Figures 8.6 and 8.7 present the TotalPAHs degradationresults and polynomialfitted (3rd 

order) Total PAHs degradation results for the bioslurry reactor experiments. Note that the initial 

PAHs values for the bioslurry reactors represent on average of duplicate sets (average per test 

condition).  These results (both Figures 8.6 and 8.7) show that the addition of nutrients, 

naphthalene degraders,and externalcarbonsources (i.e., glucose, sodium acetate, and Tween80) 

did not enhance the degradation of PAHs over the removal observed with the biotic controls. 

The addition of co-metabolites was shown during Phase I to improve the biodegradation 

of recalcitrant Heavy PAHs through the process ofco-metabolism(see Chapter V).  Thus, the co-
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metabolites (i.e., glucose, sodium acetate, and naphthalene) were added to enhance the 

degradation of the PAHs (especially Heavy PAHs). Since the removal of Heavy PAHs was 

enhanced during the previous experiments involving glucose addition (see Chapter V), 1,000 mg/l 

ofglucose was added onDays 1, 11, and 23 of this experiment. The results (bothFigures 8.6 and 

8.7) show that addition of glucose did not appear to enhance the removal of the PAHs over the 

biotic control.  Thus, the effect of different co-metabolites on the PAH degradation in the sediment 

was examined.  One hundred mg/l of sodium acetate was added on Days 50 and 63 of the 

experiments; meanwhile, 1 liter of 25 mg/l naphthalene solution was added on Days 53 and 65 of 

the experiments. Again the results showed no improvement in the Total PAHs degradation over 

the biotic control.  The results from previous bioavailability experiment (see Table 5.1) showed that 

naphthalene in the sediment remained unchanged over the course of the test, indicating that 

naphthalene degradation was hindered due to its low solubility in the aqueous phase.  Thus, it is 

believed that the poor removalofPAHs in the sediment was attributable to low bioavailability.  In 

order to increase the bioavailability, Tween 80 was added with the expectation of enhancing the 

PAH degradation.  Five percent (w/w) of Tween 80 was added on Days 74 and 86 of this 

experiment; meanwhile, 2.5% (w/w) of Tween 80 was added on Days 107 and 116 of this 

experiment.  The results show that the amount of Total PAHs decrease significantly after the 

addition of Tween 80 on Day 74 of this experiment prior to an increase on Day 98 of this 

experiment.  Surfactant has been shown to increase the solubility of organic contaminants (i.e., TPH 

and PAHs) in the aqueous phase (Tiehm et al., 1997; Wang, 1999).  This observation indicates 

that the decrease in the Total PAHs was likely attributable to the increase in the solubility of the 
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PAHs in the aqueous phase afforded by Tween 80.  This trend was observed in the previous 

experiments involving Tween 80 (see Chapter V). 

Figure 8.8 presents the Light PAHs degradation results of the bioslurry reactor 

experiments. The results show that the biodegradationof the Light PAHs also followed the trend 

observed with the Total PAHs (see Figure 8.6).  Figure 8.9 presents the naphthalene results for 

the set involving nutrients and naphthalene degraders and the biotic control.  Initially, 20 ml of 

naphthalene degraders was added onDays 1 and 11of this experiment to improve the naphthalene 

degradation. The naphthalene degradationwithin the first 50 days did not improve over the biotic 

control. So on Day 50, 500 ml of naphthalene degraders (estimated populationdensityof1x108 

CFUs/ml) was added with the expectation being the increase in the populationof the naphthalene 

degraders would later improve naphthalene degradation.  The results of this effort show that 

naphthalene levels remained unchanged evenwiththe additionof500 mlofnaphthalene degraders. 

This proves that the naphthalene degradation was inhibited due to limitations (i.e., low 

bioavailability) and not the lack of sufficient bacterial population. 

Figure 8.10 presents the Heavy PAHs degradation results for the bioslurry experiments. 

The results showthat the biodegradationof the HeavyPAHsalsofollowed the trend observed with 

the Total PAHs (see Figure 8.6).  Overall, the addition of the co-metabolites and Tween 80 did 

not enhance the removal of the Heavy PAHs. 
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Phase II: Chemical Oxidation Integrated Results 

On the 49th dayof the experiment, the slurry from the set involving nutrients addition only 

as oxidized using Fenton’s Reagent, ozone and peroxone.  Note that the raw data along with the 

standard deviation associated with these data are presented in Appendix D.  Table 8.7 presents 

the summaries and selected results for the oxidation of the Lake Superior sediment for the set 

involvingnutrients additiononly.  The heterotrophic counts for the slurry prior to oxidation was 1.4 

x 107 CFUs/ml with no colonies found after chemicaloxidation.  The TOC were slightly reduced 

for all systems after oxidation.  The pH values for the sediment were lower after the oxidation 

indicating the productionoforganic acids during the oxidationand/or due to the hydrolysis of ferric 

ions (Nebergall et al., 1976).  Ashort experiments was conducted to measure the pH levels of the 

Fenton’s Reagent and it was found that the pH of the ferrous sulfate and hydrogen peroxide 

dropped approximately from3 to 1.5, indicating that hydrolysis of ferric ions (see Table 8.8).  No 

significant changes in DO, ammonia, o-p, and nitrate levels were noticed after the oxidation, with 

the exception of the significant drop in the nitrate level for the set involving Fenton’s Reagent 

dosing, where 61% of the nitrate disappeared.  This change is not believed to be of any particular 

significance. 

Figure 8.11 presents the ozonation results for the Light, Heavy, and Total PAHs in Lake 

Superior sediment for set involvingnutrients additiononly (Reactors 3 and 4).  Note that these data 

represent an average of the data from the duplicate sets. After four hours of ozonation, 

approximately 67.7% ofthe Total PAHs was oxidized.  The degradation of the Light and Heavy 

PAH fractions were 65 % and 69 %, respectively.  When the ozone contact time was increased 
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from4 to 8 hours, the PAH levels increased within the sediment.  The increase in the PAHs amount 

is likely due to the additional degradation of the sorption bonds caused bythe oxidationofNOM 

and erosionofsoil agglomerates due to scouring affect by the foaming and agitation.  Bothof these 

act upon the extraction efficiency of the analytical process. 

Figure 8.12 presents the peroxone results for the Light, Heavy, and Total PAHs in Lake 

Superior sediment for the set involving nutrients addition only (Reactors 3 and 4).  Note that these 

data represent anaverage of the data fromthe duplicate sets.  The data for the peroxone treatment 

followed the same degradationtrend observed withthe ozone experiments.  Degradation of PAHs 

was observed within the first four hours of the treatment.  The removal of Total PAHs was 

approximately 57.2%, withthe Light and Heavy PAHs removals of 57.4% and 57%, respectively. 

However, when the hydrogenperoxide dosing concentrationwas increased from100 mg/lto 500 

mg/l, an increase in the extractable PAHs was observed.  This trend also was observed in the 

previous peroxone treatment tests where increaseinthe extractable PAHs were observed after the 

hydrogen peroxide was increased from 62.5 mg/l to 500 mg/l (see Chapter VI).  These data do 

show that the greater aggressiveness of the peroxone process did yield a more dramatic impact 

on PAH extractability. 

Figure 8.13 presents the Fenton’s Reagent results for the Light, Heavy, and Total PAHs 

in Lake Superior sediment for the set involving nutrients addition only (Reactors 3 and 4).  Note 

that these data represent an average of the data from the duplicate sets.  The tested Fenton’s 

Reagent concentrations were 25,000 mg/l hydrogen peroxide/ 2,500 mg/lferrous sulfate, 50,000 

mg/lhydrogenperoxide/ 5,000 mg/lferrous sulfate, and 100,000 mg/lhydrogenperoxide/ 10,000 
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mg/lferrous sulfate.  The results show degradation of Total PAHs after the initial dosing of Fenton’s 

Reagent at 25,000 mg/l hydrogen peroxide/ 2,500 mg/l ferrous sulfate.  The second Fenton’s 

Reagent dosing at the same concentration did not appear to further improve the degradation of 

Total PAHs.  Additionally, the further addition of Fenton’s Reagent dosing concentrations at 

50,000 mg/l hydrogen peroxide/ 5,000 mg/l ferrous sulfate did not appear to improve the 

degradation of the PAHs.  However, when the Fenton’s Reagent dosing concentrations were 

increased to 100,000 mg/lhydrogenperoxide/ 10,000 mg/l ferrous sulfate, the degradation ofthe 

Total PAHs is improve.  After six consecutive additions of Fenton’s Reagent at increasing 

concentrations, 74% of the Total PAHs was degraded.  In terms of Light PAHs, the degradation 

trend followed the same trend observed withthe TotalPAHs.  The removal of the Light PAHs in 

the sediment after six consecutive additionwas 57%.  In terms of the removal of Heavy PAHs, the 

significant degradationofTotalPAHs during the fourth dosing (100,000 mg/l hydrogen peroxide/ 

10,000 mg/l ferrous sulfate) was mainly attributed to Heavy PAHs.  The removal of the Heavy 

PAHs after six repetitive additions of Fenton’s Reagent was 91%.  Overall, the extent of 

degradationnoted withthe Light PAHs was less incomparisonto the Heavy PAHs.  This was also 

observed in the previous Fenton’s Reagent experiments (see Chapter VI). This trend appears to 

be attributable to the reactivity of these chemicals toward Fenton’s Reagent oxidation. 

Table 8.9 presents the summary of selected results for the oxidationof the Lake Superior 

sediment for the set involving naphthalene degraders and nutrients additions (Reactors 5 and 6). 

The heterotrophic counts for this slurrysystemwas approximately 1 x108 CFUs/ml.  Additionally, 

about 61 CFUs/ml were found after Fenton’s Reagent oxidation.  Both nitrate and ortho-
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phosphate were significantly reduced in the sediments.  The pH value for the slurry system 

decreased from6.6 to 4.4 after oxidation.  This trend was also observed in the previous Fenton’s 

Reagent experiment (see Table 8.7).  Again, these data suggest the decrease in pH was attributable 

to the productionoforganic acids as by-products oforganics degradation.  Note also the pH drop 

in this set of experiments is lower in comparison to the pH drop observed with the previous 

Fenton’s Reagent experiments (see Table 8.7).  No significant changes to DO level was observed 

after the oxidation.  The ammonia level in the sediment increased significantly after Fenton’s 

Reagent oxidation.  This trend was not observed in the previous Fenton’s Reagent experiments 

(see Table 8.7). 

Figure 8.14 presents the Fenton’s Reagent results for the Light, Heavy, and Total PAHs 

in Lake Superior sediment for the set involving naphthalene degraders and nutrients addition 

(Reactors 5 and 6).  Note that these data represent an average of the data from the duplicate sets. 

The tested Fenton’s Reagent concentrations were 25,000 mg/l hydrogen peroxide/ 2,500 mg/l 

ferrous sulfateand 100,000mg/lhydrogenperoxide/ 10,000 mg/lferrous sulfate.  The results show 

degradation of Total PAHs after the initial dosing of Fenton’s Reagent at 25,000 mg/l hydrogen 

peroxide/ 2,500 mg/l ferrous sulfate.  Further addition of Fenton’s Reagent at 100,000 mg/l 

hydrogenperoxide/10,000mg/lferrous sulfate yielded only a slight improvement inthe degradation 

of the Total PAHs.  The removal of Total PAHs achieved with Fenton’s Reagent was 31.9%. In 

terms ofLight PAHs removal, the results (see Figure 8.14) showthat the degradationfollowed the 

same trend observed with the Total PAHs. The removal of Light PAHs achieved after six 

repetitive additions ofFenton’s Reagent was 46%.  In terms of Heavy PAHs removal, the addition 

https://seeFigure8.14
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of Fenton’s Reagent provided a steady, but slight degradation of Heavy PAHs in the sediment. 

The removalof the Heavy PAHs was 15.1%.  Overall, the treatment effectiveness of this oxidation 

step was much less than those observed with the other bioslurry set.  This suggests that higher 

biomass dosed into these reactors reacted with the oxidizers via the catalase which in turn 

scavenged the oxidizers preventing their reaction with the PAHs. 

Phase II: Post-Oxidation Results 

On Day 84 of the experiments, slurrysystems that were oxidized using ozone, peroxone, 

and Fenton’s Reagent treatment were all composited and poured into Reactors 3 and 4 and 

biologicalactivityinthe sediment was reestablished via additionofnaphthalene degraders.  The pH 

was adjusted back to around 7.0 and nutrients also wereaddedat 1,000 ppmnitrate and 400 ppm 

phosphate. After restarting biotreatment, the oxygen and carbon dioxide headspace levels were 

similar to those previously observed prior to oxidation steps (see Tables 8.1 and 8.2).  On the 

other hand, headspace VOCs was not detected after the oxidation step.  This was likely due to the 

oxidation of the VOCs during the chemical priming steps.  The nitrate levels after oxidation was 

relatively higher incomparisontobiotic control(Table 8.4).  Note that naphthalene degraders were 

inoculated and the demand for nitrate was expected to be high. Thus, 1,000 ppm of nitrate was 

added, on top of the nitrate that was alreadypresent in the sediment, to support microbialgrowth. 

In terms of ortho-phosphate (o-p), the o-p was low after the chemical priming stage (see 

Table 8.5); thus, as stated before, 400 pm of o-p was added also to support microbial growth. 

After a week of reestablishing biological activity, the o-p dropped two orders ofmagnitude.  This 
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highdemands ofo-p indicates biologicaluptake by the microbes present in the sediment.  This high 

demand of o-p was not observed with Wang (1999) or Zappi et al. (1993). 

Again, ammonia was added to the slurrysystems in the formofammonium nitrate.  On Day 

91 of the experiments, the ammonia levelwas still higher in comparison to biotic control (see Table 

8.6). The DO levels within the sediment remained comparatively unchanged after oxidation (see 

Figure 8.1).  This indicates that the systems remained aerobic after biological activity was 

reestablished. The OUR levels were also about the same after oxidation(prior to oxidation) (see 

Figure 8.2).  This level of OUR indicates the biological activity was effectively restored. The results 

show that pH increased significantly (pH of 8) after biological activity was reestablished in the 

sediment (see Figure 8.4). 

Figure 8.15 presents the post-oxidation PAH analytical results for the bioremediation of 

the bioslurry experiments for the set involving nutrients addition only.  These results show an 

increase in the Total PAHs after bioremediation had been reestablished. Despite this increase, a 

slight degradation ofthe TotalPAHs was observed betweenDays 98 and 105 of the experiments 

prior to an increase in by Day 127.  This increase in extractable PAHs is likely due to natural 

biosurfactants produced from the increased levels of bacterial activity.  The degradation of PAHs 

within the sediment (after chemicaloxidation) is a step sequence of the degradationofPAHs within 

the sediment before the oxidationstep.  This is based on the fact the trends of PAHs degradation 

(before and after oxidation) are similar.  Ingeneral, no further degradationofPAHs was observed 

after the chemical oxidation.  This phenomenon was not observed by Wang (1999) during the 

reestablished biotreatment of TPH contaminated soils.  The results in Figure 8.15 also show that 
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the trend observed withthe biodegradationof the Lightand Heavyfractions also followed the trend 

observed with the Total PAHs. 

Summary of Biotreatment and Integrated Results 

In the bioslurry experiments, the objective was to bioremediate PAH contaminated 

sediment under conditions that better simulated real reactor conditions.  Numerous bioremediation 

strategies were performed to find the optimal approach to decontaminating PAH incontaminated 

sediment.  The additions of nutrients, naphthalene degraders, and co-metabolites did not provide 

significant improvement of PAH degradation over the biotic control.  It was believed that the poor 

degradationwas largely due to the limited bioavailabilityofthe PAHs.  Thus, Tween 80 was added 

to one of the slurry system with the expectation of increasing the bioavailability of the PAHs and 

later improve the biodegradationrate.  The results show that the addition of Tween 80 on Day 74 

of the experiments yielded a very slight improvement over the biotic control.  Further addition of 

the Tween 80 ended up improving the extractability of the PAH inthe aqueous phase, but not the 

extent of removal. 

Ozone was found to have resulted in the degradation of PAH by 47% after 8 hours of 

contact time.  The degradation of the Light and Heavy PAH fractions were 37.3% and 45.6%, 

respectively.  On the other hand, peroxone treatment increased the extractability of PAHs via 

destabilization and/or oxidation of the PAH-adsorption bonds. 

For the Fenton’s Reagent experiments, there were two sets of bioreactors tested: the set 

involving nutrients addition alone (Reactors 3 and 4) and set involving naphthalene degraders 
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inoculationand nutrients addition(Reactors 5 and 6).  After six repetitive applications ofFenton’s 

Reagent, the removal of the Total PAHs was 74% for the nutrients amended sets.  The removals 

ofLight and Heavy PAHswere 57% and 91%, respectively.  The degradation of Heavy PAH was 

significantly greater because of the availabilityof these chemicals in the aqueous phase for chemical 

oxidation.  As stated before, Fenton’s Reagent also was applied to the set involving the 

naphthalene degraders inoculationand nutrients addition.  Clearly, the microbial density for this set 

is higher in comparison to the other set that was treated with Fenton’s Reagent because of the 

inoculationof the naphthalene degraders on Day 50 of the experiments.  The results showthat the 

additionofFenton’s Reagent insequence and in increasing dosing concentration provided 31.9% 

removal of Total PAHs.  The removals of Light and Heavy PAHs were 46% and 15.1%, 

respectively.  This level of PAHs degradation was lower in comparison to the degradation 

observed with the nutrients amended sets. It is believed that the degradationof the Heavy PAHs 

was hindered due to the reactivity of these chemicals towards Fenton’s Reagent oxidation. 

However, it is also speculated that the addition of the naphthalene degraders might have 

contributed to this phenomenon. 

The objective of the post oxidation step was to further degrade the remaining PAHs 

including the oxidation by-products in the sediment.  The degradation of PAHs did appear to 

improve slightly after the biological activity was reestablished into the nutrients amended sets. 

Despite this improvement, the bioavailability of the PAHs in the sediment increased slightly over 

the next 40 days.  Additionally, the degradation of the PAHs within the sediment (after chemical 

oxidation) is a step sequence of the degradation of PAHs within the sediment before the oxidation 
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step.  The trends of PAHs degradation (before and after chemical oxidation) were similar in a sense 

indicating that the poor degradation of PAHs was due to limited bioavailability.  The introduction 

ofchemicaloxidizers improved the extractabilityand degradabilityofthe PAHswithinthe sediment, 

but did not improve the degradation of PAHs during the subsequent biotreatment step.  Overall, 

no degradationofPAHs was observed in the post oxidation step.  This conclusion is based on the 

fact that the finalamount ofTotalPAHs towards the end of the experiments (Day 144) was higher 

than the amount when the biological activity was reestablished (Day 84). 
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Table 8.1. Bioreactor Headspace Oxygen Content Results for the Bioslurry Experiments 

Condition Biotic control Nutrients Bio.+Nutrients Bio.+Nutrients+Ext.C. 
Day 
0 20.9 20.9 20.90 20.9 
14 20.9 20.9 20.90 20.9 
21 20.7 20.7 20.7 20.8 
28 20.9 20.9 20.9 20.9 
35 20.9 20.9 20.9 20.9 
42 20.8 20.9 20.9 20.9 
49 20.5 20.8 20.7 20.5 
59 20.9 N/A 20.9 20.9 
77 20.8 N/A 20.9 15.5 
84 20.9 20.9 20.9 20.0 

Notes: 
- Oxygen content is represented as % 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- Bio.: Indicates naphthalene degraders addition 
- Ext. C.: Indicates 1,000 mg/lglucose, 100mg/lsodiumacetate,25 mg/lnaphthalene solution, and 
5% and 2.5% Tween 80 additions 
- N/A: Indicates not available 
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Table 8.2. Bioreactor Headspace Carbon Dioxide Results for the Bioslurry Experiments 

Condition Biotic control Nutrients Bio.+Nutrients Bio.+Nutrients+Ext.C. 
Day 
0 0.3 0.1 0.2 0.0 
7 0.2 0.2 0.2 0.2 

14 0.0 0.0 0.0 0.0 
21 0.0 0.0 0.0 0.0 
28 0.0 0.0 0.0 0.0 
35 0.0 0.0 0.0 0.0 
42 0.0 0.0 0.0 0.0 
49 0.0 0.0 0.0 0.0 
59 0.0 N/A 0.0 0.0 
77 0.0 N/A 0.0 3.8 
84 0.0 0.0 0.0 0.3 

Notes: 
- Carbon dioxide is represented as % 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.: Indicates 1,000 mg/lglucose, 100 mg/lsodium acetate, 25 mg/lnaphthalene solution, and 
5% and 2.5% Tween 80 additions 
- N/A: Indicates not available 
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Table 8.3. Bioreactor Headspace Volatile Organic Carbon Levels for the Bioslurry 
Experiments 

Condition Biotic control Nutrients Bio.+Nutrients Bio.+Nutrients+Ext.C. 
Day 
0 350 330 360 330 
7 380 340 320 400 

14 1580 1580 1530 1490 
21 2550 2660 2850 3230 
28 340 130 740 500 
35 700 430 130 170 
42 1460 1130 1060 1050 
49 1520 1410 1730 1420 
59 30 N/A 10 360 
77 830 N/A 1010 1180 
84 520 0 30 400 

Notes: 
- Volatile organic carbon is represented as ppm 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.:Indicates1,000 mg/lglucose, 100 mg/lsodium acetate, 25 mg/lnaphthalene solution, and 
5% and 2.5% Tween 80 additions 
- N/A: Indicates not available 
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Table 8.4. Nitrate Results in the Bioslurry Reactors for Phase II: Bioslurry Experiments 

Day Biotic control Nutrients Bio.+Nutrients Bio.+Nutrients+Ext.C. 
0 8.68 8.68 8.68 8.68 
7 356.5 310 610.7 452.6 

14 204.6 1922 1829 1457 
21 368.9 3100 3069 2480 
35 198.4 2356 2356 1860 
42 443.3 3348 3286 2325 
49 241.8 2542 2480 2046 
56 291.4 N/A 2635 1705 
63 269.7 N/A 2139 1829 
91 344.1 N/A 2883 23.87 
98 272.4 1643 2263 940.54 

109 356.5 2449 2976 2883 
116 713 5270 5332 3143.4 
123 930 6820 7130 4708.9 
130 647.9 6665 N/A 4056.97 
137 806 7750 7440 805.38 
151 2604 10850 8060 2111.1 

Notes: 
- Nitrate is represented as mg/l 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.:Indicates1,000mg/lglucose, 100 mg/lsodium acetate, 25 mg/lnaphthalene solution, and 
5% and 2.5% Tween 80 additions 
- N/A: Indicates not available 
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Table 8.5. Ortho-Phosphate Results in the Bioslurry Reactors for Phase II: Bioslurry 
Experiments 

Day Biotic control Nutrients Bio.+Nutrients Bio.+Nutrients+Ext.C. 
0 0.21 0.46 0.44 0.36 
7 0.09 0.20 0.18 0.16 

14 0.11 0.51 0.62 0.35 
21 0.21 0.46 0.44 0.36 
35 0.09 0.20 0.18 0.16 
42 0.09 0.21 0.21 0.23 
49 0.08 0.15 0.12 0.16 
56 0.08 N/A 12.65 6.98 
63 0.10 N/A 5.38 4.38 
77 0.06 N/A 12.40 4.33 
91 0.11 0.96 40.75 12.00 
98 0.17 0.45 22.38 2.48 

109 0.15 0.51 18.75 3.19 
116 0.18 0.54 14.63 3.84 
123 0.19 0.49 0.00 3.51 
130 0.16 10.70 7.50 3.18 
137 0.14 8.63 4.88 3.78 
151 0.17 5.25 4.25 3.53 

Notes: 
- Ortho-phosphate is represented as mg/l 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.: Indicates 1,000 mg/lglucose, 100 mg/lsodium acetate, 25 mg/lnaphthalene solution, and 
5% and 2.5% Tween 80 additions 
- N/A: Indicates not available 
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Table 8.6. Ammonia Results in the Bioslurry Reactors for Phase II: Bioslurry Experiments 

Day Biotic 
control 

Nutrients Bio.+Nutrients Bio.+Nutrients+Ext.C. 

0 0.36 0.36 0.36 0.36 
7 0.18 0.11 0.15 0.05 

14 0.43 0.42 0.45 0.40 
21 0.15 0.49 0.55 0.37 
35 0.20 0.13 0.11 0.09 
42 0.06 0.07 0.06 0.05 
49 0.06 0.05 0.05 0.05 
56 0.06 N/A 0.05 0.05 
63 0.06 N/A 0.05 0.05 
77 0.06 N/A 0.05 0.04 
91 0.16 5.19 0.06 15.58 
98 0.16 0.07 0.06 3.59 

109 0.06 0.06 0.05 1.99 
116 0.39 0.06 0.04 2.15 
123 0.09 0.03 0.00 3.50 
130 0.09 0.05 0.16 1.03 
151 0.04 0.01 0.01 0.10 

Notes: 
- Ammonia is represented as mg/l 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext. C.: Indicates 1,000 mg/lglucose,100mg/lsodiumacetate, 25 mg/lnaphthalene solution, and 
5% and 2.5% Tween 80 additions 
- N/A: Indicates not available 
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T a bl e 8. 7. S u m m ar y of t h e C h e mi c al Pri mi n g C o n diti o ns a n d S el e ct e d R es ults f or t h e 
N utri e nts S ets ( R e a ct ors 3 a n d 4) 

C o n diti o n: F e nt o n’s 
R e a g e nt 

O z o n e P er o x o n e 

O z o n e Fl o w R at e, s cf h N/ A 2. 5 2. 5 

P er c e nt O z o n e ( b y wt) N/ A 4 4 

S [ H2 O 2 ], m g/l 3 5 0, 0 0 0 - 2, 4 0 0 

S [ F e S O4 ], m g/l 3 5, 0 0 0 - -

H 2 O 2 / F e2 + r ati o 1 0: 1 - -

T ot al 
H et er otr o p hi c 
C o u nt, C F Us/ 

B ef or e / Aft er 1. 4 x 1 0 7  / 0 1. 4 x 1 0 7  / 0 1. 4 x 1 0 7  / 0 

p H B ef or e / Aft er 6. 7 / 2. 5 6. 7 / 5. 3 6. 7 / 5. 4 

D O, m g/l B ef or e / Aft er 5. 2 / 5. 5 5. 2 / 3. 5 5. 2 / 5. 0 

A m m o ni a, m g/l B ef or e / Aft er 0. 0 5 / 0. 0 3 0. 0 5 / 0. 0 2 0. 0 5 / 0. 0 2 

Nitr at e, m g/l B ef or e / Aft er 2 5 4 2 / 9 9 2 2 5 4 2 / 2 3 8 7 2 5 4 2 / 2 5 1 1 

O- P, m g/l B ef or e / Aft er 0. 1 5 / 0. 3 2 0. 1 5 / 0. 3 8 0. 1 5 / 0. 1 

T O C, m g/ k g B ef or e / Aft er 3 4 1 1 5 / 3 0 8 5 8 3 4 1 1 5 / 3 0 3 3 0 3 4 1 1 5 / 3 2 2 2 8 

N ot e: 
- N utri e nts: I n di c at es 1, 0 0 0 m g/l nitr at e a n d 4 0 0 m g/l p h os p h at e a d diti o ns w e e kl y 
- N/ A: I n di c at es n ot a p pli c a bl e 
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T a bl e 8. 8. p H L e v els of F err o us S ulf at e a n d H y dr o g e n P er o xi d e 

p H \ C o m p o u n ds 
B ef or e A d diti o n Aft er A d diti o n 

F err o us S ulf at e 1 H y dr o g e n P er o xi d e 2 F err o us S ulf at e + 
H y dr o g e n P er o xi d e 

A v er a g e 3. 1 6 3. 5 4 1. 6 8 

St a n d ar d D e vi ati o n 0. 0 3 0. 2 4 0. 0 4 

N ot es: 
1 2 5, 0 0 0 m g/l F err o us s ulf at e s ol uti o n 
2 1 5 0, 0 0 0 m g/l h y dr o g e n p er o xi d e s ol uti o n 

T a bl e 8. 9. S u m m ar y of t h e C h e mi c al Pri mi n g C o n diti o ns a n d S el e ct e d R es ults f or t h e 
Bi o. + N utri e nts ( R e a ct ors 5 a n d 6) 

C o n diti o n: F e nt o n’s R e a g e nt 

S [ H2 O 2 ], m g/l 4 5 0, 0 0 0 

S [ F e S O4 ], m g/l 4 5, 0 0 0 

H 2 O 2 / F e2 + r ati o 1 0: 1 

T ot al H et er otr o p hi c C o u nt, C F Us/ ml B ef or e / Aft er 1 x 1 0 8  / 6 1 

p H B ef or e / Aft er 6. 6 / 4. 4 

D O, m g/l B ef or e / Aft er 5. 2 / 5. 7 

A m m o ni a, m g/l B ef or e / Aft er 0. 0 4 / 2 5 5. 0 0 

Nitr at e, m g/l B ef or e / Aft er 6 8 2 0 / 2 2 9 4 

O- P, m g/l B ef or e / Aft er 1 4. 6 0 / 0. 2 5 

N ot es: 
- N utri e nts: I n di c at es 1, 0 0 0 m g/l nitr at e a n d 4 0 0 m g/l p h os p h at e a d diti o ns w e e kl y 
- Bi o.: I n di c at es n a p ht h al e n e d e gr a d ers a d diti o n 
- N/ A: I n di c at es n ot a p pli c a bl e 
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Figure 8.1. Dissolved Oxygen Readings for Phase II: Bioslurry Experiments 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.: Indicates 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene, 
and 5% and 2.5% Tween 80 additions 
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Figure 8.2. Oxygen Uptake Rate Results for Phase II: Bioslurry Experiments 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.: Indicates 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene, 
and 5% and 2.5% Tween 80 additions 
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Figure 8.3. Total Suspended Solid Results for Phase II: Bioslurry Experiments 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.: Indicates 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene, 
and 5% and 2.5% Tween 80 additions 
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Figure 8.4. pH Readings for Phase II: Bioslurry Experiments 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.: Indicates 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene, 
and 5% and 2.5% Tween 80 additions 
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Figure 8.5. Total Organic Carbon in Sediment Results for Phase II: Bioslurry
      Experiments 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.: Indicates 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene, 
and 5% and 2.5% Tween 80 additions 
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Figure 8.6. Bioremediation Results for Total PAHs in the Lake Superior Sediment 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.: Indicates 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene, 
and 5% and 2.5% Tween 80 additions 
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Figure 8.7. Polynomial Fit of the Bioremediation Results for Total PAHs in the Lake 
      Superior Sediment 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.: Indicates 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene, 
and 5% and 2.5% Tween 80 additions 
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Figure 8.8. Bioremediation Results for Light PAHs in the Lake Superior Sediment 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.: Indicates 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene, 
and 5% and 2.5% Tween 80 additions 
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Figure 8.9. Bioremediation Results for Naphthalene in the Lake Superior Sediment 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
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Figure 8.10. Bioremediation Results for Heavy PAHs Results in the Lake Superior 
        Sediment 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- Ext.C.: Indicates 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene, 
and 5% and 2.5% Tween 80 additions 
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Figure 8.11. Integrated Ozonation Results of Lake Superior Sediment 
(Nutrients set- Reactors 3 and 4) 

Note: 
- 3% (w/w) ozone at 2.5 scfh 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
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Figure 8.12. Integrated Peroxone Treatment Results of Lake Superior Sediment 
(Nutrients set- Reactors 3 and 4) 

Notes: 
- 3%wt Ozone at 2.5 scfh 
- 100 mg/l H2O2 every hour for the first 4 hours and 500 mg/l H2O2 dosing every hour for 
the next 4 hours 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
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Figure 8.13. Integrated Fenton’s Reagent Treatment Results of Lake Superior Sediment 
(Nutrients set-Reactors 3 and 4) 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- 25,000 HP/2,500 Fe, 50,000 HP/5,000 Fe, and 100,000 HP/10,00 Fe indicate the 
hydrogen peroxide and ferrous sulfate dosing step applied at increasing concentrations 
- HP: Indicates H2O2 in mg/l 
- Fe: Indicates Fe2+ in mg/l 
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Figure 8.14. Integrated Fenton’s Reagent Results of PAH in Lake Superior Sediment 
(Bio.+Nutrients set-Reactors 5 and 6) 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
- Bio.: Indicates naphthalene degraders addition 
- 25,000 HP/2,500 Fe and 100,000 HP/10,00 Fe indicate the hydrogen peroxide and 
ferrous sulfate dosing step applied at increasing concentrations 
- HP: Indicates H2O2 in mg/l 
- Fe: Indicates Fe2+ in mg/l 
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Figure 8.15. Post-Oxidation PAH Results in the Lake Superior Sediment 
(Nutrients Set- Reactors 3 and 4) 

Notes: 
- Nutrients: Indicates 1,000 mg/l nitrate and 400 mg/l phosphate additions weekly 
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CHAPTER IX 

CONCLUSIONS AND IMPLICATIONS 

Conclusions 

The following primary conclusions were made from this study: 

a. Poor degradation associated with biotreatment of the naphthalene was due to 
limited bioavailability and not the enzymatic capability of the microorganisms. 

b. An increase in amount ofextractable PAHs was observed after a short period of 
decreasing levels during all of the biotreatment steps. 

c. The lesser aggressive oxidation process (Fenton’s Reagent) resulted in a 50% 
Total PAH removal, while the more aggressive oxidation process (peroxone) 
dramatically increased the level of extractable Total PAHs (probably due to the 
oxidation of the organic adsorption site). 

d. The proposed combination of both biotreatment and chemical oxidation was 
deemed ineffective for the higher contaminated sediment (Lake Superior). It was 
speculated that the presence ofhighbiomass densities within the bioslurryreactors 
and a complex chemical matrix scavenged the oxidizers. 

e. The integrationofbiotreatment and chemicaloxidationwas deemed successful for 
the lesser contaminated sediment (Scioto River), likely due to reduced stimulated 
biomass levels and a much simpler chemical matrix. 

The following secondary conclusions were made based from the results of the individual 

experiments: 

Lake Superior Sediment 

194 
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a. The addition of nutrients at a PAH:N:P concentration ratio of 1:32:13 provided 
slow but steady degradation of PAHs within sediment as opposed to the set 
involving PAH:N:P concentration ratio of 100:20:5, which provided limited 
degradation. This increased nutrient dosage was considered a better dosing ratio 
when taking into account the total organic carbon present in the sediment. 

b. The slurry systems involving addition of Tween 80 exhibited an 80% increase in 
the amount of extractable Total PAHs within the sediment as compared to the 
initial Total PAHs. 

c. The addition of Tween 80 and glucose improved the degradation of the PAHs 
over the course of 20 weeks. Heavy PAHs were not detected within the sediment 
(glucose amended set) after 15 weeks of biotreatment. 

d. The amendments of both Tween80 and glucose hindered the degradation of Light 
PAHs as compared to the degradation of the Heavy PAHs. This effect was 
believed to be caused by substrate competition. 

e. Ozonation of the sediment provided a 26% removal of the Total PAHs in the 
sediment slurry within 2 hours of treatment. 

f. Peroxone treatment provided a 43.3% removalof the TotalPAHs in the sediment 
within the first six hours of treatment. However, further treatment of peroxone 
resulted in a 70% increase in the amount of extractable PAHs within the sediment. 
The oxidation of the adsorption link was speculated to be the cause of this 
increase. 

g. On average, 67% of added 1000 mg/l H2O2 was consumed in the equilibrated 
water samples within a 24-hour period. Reaction with the dissolved constituents 
from the sediments was believed to be the cause of these reactions. 

h. The additionof hydrogenperoxide at 1,000 mg/l, 10,000 mg/l, and 100,000 mg/l 
provided an 80%, 40%, and 7% increase in the extractable Total PAHs, 
respectively, within the sediment as compared to the initial extractable Total 
PAHs. 

i. All systems exhibited over 90% hydrogen peroxide degradation in the sediment 
within 20 hours of treatment time. The hydrogen peroxide removal was believed 
to be due to both abiotic reactions (oxidation with natural organic matter and 
dissolved cations) and biotic reactions (reaction with catalase). 
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j. Heavy PAHs within all slurry systems were not detected after seven dosing 
applications of Fenton’s Reagent (25,000 mg/l H2O2 + 2,500 mg/l Fe2+ and 
100,000 mg/l H2O2 + 10,000 mg/l Fe2+). 

k. The addition of Fenton’s Reagent using a lower cumulative amount of H2O2 and 
Fe2+ was an effective and comparably a more economical treatment condition 
compared to the higher dosed Fenton’s Reagent systeminterms ofPAH removal 
from the sediment. 

l. The addition of Tween 80 into the bioslurry reactors after Day 98 of the 
experiments resulted ina 169% increase in the amount ofextractable PAHs within 
the sediment. 

m. After eight hours of treatment, ozonation provided a 41% removal of extractable 
PAHs from the sediment that was previously bioslurry treated. 

n. Peroxone treatment provided 57% removal of the total extractable PAHs in the 
previously bioslurry treated sediment within the first four hours of treatment. 
However, further treatment of the sediment sample with peroxone resulted in a 
57% increase in the amount of extractable PAHs over the initial starting 
concentration. 

o. The subsequent biotreatment step after the chemical oxidation provided a 51% 
increase in the amount of extractable PAHs within the sediment in 60 days. This 
trend was observed each time a biotreatment step was applied (pre-post 
oxidation). 

Scioto River Sediment 

a. The addition of nutrients (N and P), activated sludge, and Tween80 resulted ina 
100% increase in the amount of extractable PAHs in the sediment within four 
weeks of biotreatment as compared to the initial Total PAHs. 

b. The systems involving the additionofnutrients and/or activated sludge achieved at 
least an 80% removal of PAHs by the third week of biotreatment prior to an 
increase in the amount of extractable PAHs (approximately 30% of the original 
concentration) by the fourth week (an overall net 70% reduction). 

c. All slurrysystems exhibited the same complete removalofPAH after sevendosing 
applications of Fenton’s Reagent. This effect was not observed within the Lake 
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Superior Sediment, proving a high potential for treating this sample using this 
proposed process. 

Study Implications 

This study indicates mixed results in terms of the viability of the proposed process for 

treating PAH-contaminated sediments. The highly contaminated and chemically more complex 

sediment (Lake Superior) proved too challenging for the integrated process. However, the less 

chemically complex sediment (Scioto River) appears to be conducive toward the proposed 

integrated treatment process. The application of the integrated process is likely best performed 

early into the biotreatment step once the totalextractable PAHs are partly removed(less than50% 

of the initial concentration). This will allow for the natural sediment oxygen demand to be 

overcome, without dramatically disturbing the adsorption equilibria. After the biotreatment step, 

chemical oxidation appears to be capable of rapidly degrading the remaining fractions of PAHs. 

However, given that the process worked withone sediment and not the other, additional research 

is needed to determine what mechanisms are controlling treatment within these sediment systems. 
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Notes: 

2-ring PAH: Naphthalene 
3-ring PAHs: Acenaphthylene, Acenaphthene, Fluorene, Anthracene, and Phenanthrene 
4-ring PAHs: Fluoranthene, Pyrene, Benzo[a]anthracene, and Chrysene 
5-ring PAHs: Benzo[k]fluoranthene, Benzo[b]fluoranthene, Benzo[a]pyrene, and 
Dibenz[a,h]anthracene 
6-ring PAHs: Benzo[g,h,i] perylene and Indeno[1,2,3-cd]perylene 
Ave: Average 
Stdev: Standard deviation 
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Table A.1. PAH Results for the Bioavailability Experiments 

Condition Naphthalene Degraders + 25 mg/l 
Naphthalene Solution Addition 

Naphthalene Degraders + PAH 
Contaminated Sediment 

Treatment 
Time, Hour 

Liquid Phase Naphthalene Analysis, mg/l 

Replica 
Ave Stdev 

Replica 
Ave Stdev 

1 2 1 2 

0 11.64 22.55 17.10 7.72 3.24 2.39 2.81 0.60 

1.6 2.25 2.63 2.44 .27 0 0 0 0 

70.1 0 0 0 0 0 0 0 0 

Treatment 
Time, Hour 

Soil Phase Naphthalene Analysis, 
mg/kg 

Replica 
Ave Stdev 

1 2 

0 314.87 254.60 284.73 42.62 

1.6 193.67 244.67 219.17 36.06 

70.1 311.11 177.23 244.17 94.67 
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Table A.2. pH Results for the Biotreatment of the Scioto River Sediment 

Week 
0 1 2 3 4 

Biotic Control 
Replica 1 7.58 7.46 7.75 7.39 7.59 

2 7.58 7.25 7.60 7.38 7.48 
Average 7.58 7.36 7.68 7.39 7.54 
Stdev 0.00 0.15 0.11 0.01 0.08 

Nutrients 
Replica 1 7.58 6.79 7.40 7.20 7.32 

2 7.58 6.59 7.36 7.16 7.32 
Average 7.58 6.69 7.38 7.18 7.32 
Stdev 0.00 0.14 0.03 0.03 0.00 

AS.+100:20:5 
Replica 1 7.58 6.63 7.40 7.15 7.31 

2 7.58 6.64 7.38 7.11 7.27 
Average 7.58 6.64 7.39 7.13 7.29 
Stdev 0.00 0.01 0.01 0.03 0.03 

AS.+100:20:5
 + T80 

Replica 1 7.58 6.06 6.05 5.84 5.48 
2 7.58 6.08 6.05 5.83 6.00 

Average 7.58 6.07 6.05 5.84 5.74 
Stdev 0.00 0.01 0.00 0.01 0.37 

Notes: 
- PAH represented as mg/kg 
- AS.: Bioaugmentation with activated sludge from the return line of a local wastewater 
- 100:20:5 represent PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following weeks 
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Table A.3. PAH Results for Phase I: Bioremediation Screening Test (Scioto River 
Sediment) 

Condition Week PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Biotic 
Control 

0 Replica 1 1.44 6.44 7.88 14.09 4.46 4.30 22.86 30.74 
2 2.42 1.15 3.57 8.48 2.28 3.76 14.52 18.09 

Average 1.93 3.79 5.72 11.29 3.37 4.03 18.69 24.41 
Stdev 0.69 3.75 3.05 3.97 1.55 0.38 5.89 8.95 

1 Replica 1 1.17 6.36 7.53 16.95 8.97 6.57 32.50 40.02 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Average 0.59 3.18 3.76 8.48 4.49 3.29 16.25 20.01 
Stdev 0.83 4.49 5.32 11.99 6.34 4.65 22.98 28.30 

2 Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 6.45 6.45 15.95 13.54 5.46 34.94 41.39 

Average 0.00 3.23 3.23 7.97 6.77 2.73 17.47 20.70 
Stdev 0.00 4.56 4.56 11.28 9.57 3.86 24.71 29.27 

3 Replica 1 0.00 1.43 1.43 6.67 5.00 4.39 16.06 17.49 
2 0.00 10.97 10.97 18.02 14.39 9.19 41.59 52.56 

Average 0.00 6.20 6.20 12.34 9.69 6.79 28.83 35.03 
Stdev 0.00 6.74 6.74 8.03 6.64 3.39 18.06 24.80 

4 Replica 1 0.00 1.13 1.13 3.81 1.18 2.61 7.60 8.73 
2 0.00 2.33 2.33 10.63 6.65 6.01 23.29 25.62 

Average 0.00 1.73 1.73 7.22 3.91 4.31 15.44 17.17 
Stdev 0.00 0.85 0.85 4.82 3.87 2.41 11.10 11.94 

Note: 
- PAH represented as mg/kg 
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Table A.3. (Continued) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

100:20:5 

0 Replica 1 1.44 6.44 7.88 14.09 4.46 4.30 22.86 30.74 
2 2.42 1.15 3.57 8.48 2.28 3.76 14.52 18.09 

Average 1.93 3.79 5.72 11.29 3.37 4.03 18.69 24.41 
Stdev 0.69 3.75 3.05 3.97 1.55 0.38 5.89 8.95 

1 Replica 1 0.00 6.49 6.49 4.82 0.45 0.76 6.04 12.53 
2 0.00 0.60 0.60 6.50 4.01 3.77 14.28 14.88 

Average 0.00 3.54 3.54 5.66 2.23 2.27 10.16 13.70 
Stdev 0.00 4.16 4.16 1.18 2.51 2.13 5.83 1.66 

2 Replica 1 0.00 0.00 0.00 1.87 0.79 1.26 3.92 3.92 
2 0.00 0.00 0.00 0.59 0.00 1.93 2.52 2.52 

Average 0.00 0.00 0.00 1.23 0.40 1.59 3.22 3.22 
Stdev 0.00 0.00 0.00 0.91 0.56 0.48 0.99 0.99 

3 Replica 1 0.00 0.00 0.00 1.49 2.63 3.09 7.21 7.21 
2 0.00 0.00 0.00 0.00 0.00 1.10 1.10 1.10 

Average 0.00 0.00 0.00 0.74 1.32 2.10 4.16 4.16 
Stdev 0.00 0.00 0.00 1.05 1.86 1.41 4.32 4.32 

4 Replica 1 0.00 1.96 1.96 8.79 8.44 7.44 24.68 26.64 
2 0.00 1.04 1.04 6.67 5.16 6.15 17.98 19.02 

Average 0.00 1.50 1.50 7.73 6.80 6.80 21.33 22.83 
Stdev 0.00 0.65 0.65 1.50 2.32 0.91 4.74 5.39 

Notes: 
- PAH represented as mg/kg 
- 100:20:5 represents PAH:N:P ratio 
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Table A.3. (Continued) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

AS. + 
100:20:5 

0 Replica 1 1.44 6.44 7.88 14.09 4.46 4.30 22.86 30.74 
2 2.42 1.15 3.57 8.48 2.28 3.76 14.52 18.09 

Average 1.93 3.79 5.72 11.29 3.37 4.03 18.69 24.41 
Stdev 0.69 3.75 3.05 3.97 1.55 0.38 5.89 8.95 

1 Replica 1 0.00 1.48 1.48 7.59 5.03 5.34 17.95 19.43 
2 0.00 0.53 0.53 3.48 1.36 2.61 7.45 7.99 

Average 0.00 1.00 1.00 5.54 3.19 3.98 12.70 13.71 
Stdev 0.00 0.67 0.67 2.90 2.59 1.93 7.42 8.09 

2 Replica 1 0.00 0.06 0.06 2.89 0.00 3.31 6.20 6.26 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Average 0.00 0.03 0.03 1.45 0.00 1.65 3.10 3.13 
Stdev 0.00 0.04 0.04 2.04 0.00 2.34 4.38 4.42 

3 Replica 1 0.00 0.00 0.00 0.00 0.00 0.81 0.81 0.81 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Average 0.00 0.00 0.00 0.00 0.00 0.41 0.41 0.41 
Stdev 0.00 0.00 0.00 0.00 0.00 0.58 0.58 0.58 

4 Replica 1 0.00 0.01 0.01 1.54 0.00 1.96 3.50 3.51 
2 0.00 5.62 5.62 10.92 0.00 3.30 14.23 19.84 

Average 0.00 2.81 2.81 6.23 0.00 2.63 8.86 11.68 
Stdev 0.00 3.97 3.97 6.63 0.00 0.95 7.58 11.55 

Notes: 
- PAH represented as mg/kg 
- AS.: Bioaugmentation with activated sludge from the return line of a local wastewater 
- 100:20:5 represent PAH:N:P ratio 
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Table A.3. (Continued) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

AS. + 
100:20:5 

+ T80 

0 Replica 1 1.44 6.44 7.88 14.09 4.46 4.30 22.86 30.74 
2 2.42 1.15 3.57 8.48 2.28 3.76 14.52 18.09 

Average 1.93 3.79 5.72 11.29 3.37 4.03 18.69 24.41 
Stdev 0.69 3.75 3.05 3.97 1.55 0.38 5.89 8.95 

1 Replica 1 0.00 7.15 7.15 19.14 3.88 3.12 26.15 33.30 
2 0.00 0.55 0.55 3.21 18.08 0.00 21.29 21.84 

Average 0.00 3.85 3.85 11.18 10.98 1.56 23.72 27.57 
Stdev 0.00 4.67 4.67 11.26 10.04 2.21 3.43 8.10 

2 Replica 1 0.00 3.95 3.95 8.11 34.23 0.00 42.34 46.29 
2 0.00 6.14 6.14 15.36 1.97 0.00 17.32 23.46 

Average 0.00 5.05 5.05 11.73 18.10 0.00 29.83 34.88 
Stdev 0.00 1.55 1.55 5.13 22.81 0.00 17.69 16.14 

3 Replica 1 0.00 4.14 4.14 9.92 8.95 0.00 18.87 23.01 
2 0.00 4.79 4.79 9.91 22.00 7.65 39.56 44.35 

Average 0.00 4.46 4.46 9.92 15.48 3.83 29.22 33.68 
Stdev 0.00 0.46 0.46 0.01 9.23 5.41 14.63 15.09 

4 Replica 1 0.71 6.29 7.00 11.34 0.88 0.99 13.21 20.21 
2 0.00 23.19 23.19 38.00 17.40 4.60 60.00 83.20 

Average 0.36 14.74 15.10 24.67 9.14 2.80 36.61 51.70 
Stdev 0.50 11.96 11.45 18.85 11.68 2.56 33.09 44.54 

Notes: 
- PAH represented as mg/kg 
- AS.: Bioaugmentation with activated sludge from the return line of a local wastewater 
- 100:20:5 represent PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following weeks 



www.manaraa.com

215 

Table A.4. PAH Results for Phase I: Bioremediation Screening Test (Lake Superior 
Sediment) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Biotic 
Control 

0 Replica 1 81.40 63.34 144.74 83.58 29.31 21.73 83.58 228.32 
2 114.59 63.85 178.45 88.07 29.75 27.10 88.07 266.52 

Average 98.00 63.60 161.59 85.83 29.53 24.42 85.83 247.42 
Stdev 23.47 0.37 23.84 3.18 0.32 3.80 3.18 27.01 

1 Replica 1 109.36 54.65 164.01 116.50 48.15 34.46 82.61 246.63 
2 110.36 49.61 159.97 80.06 24.50 29.91 54.41 214.38 

Average 109.86 52.13 161.99 98.28 36.33 32.19 68.51 230.50 
Stdev 0.71 3.57 2.86 25.76 16.72 3.22 19.94 22.80 

2 Replica 1 77.15 46.03 123.17 38.62 25.82 19.49 45.32 168.49 
2 92.89 42.42 135.31 41.19 24.98 37.56 62.54 197.85 

Average 85.02 44.23 129.24 39.90 25.40 28.52 53.93 183.17 
Stdev 11.13 2.55 8.59 1.82 0.59 12.77 12.18 20.76 

3 Replica 1 95.28 46.84 142.12 43.49 36.15 83.12 119.27 261.40 
2 73.44 43.08 116.52 32.12 23.57 34.32 57.89 174.41 

Average 84.36 44.96 129.32 37.81 29.86 58.72 88.58 217.90 
Stdev 15.45 2.66 18.10 8.04 8.90 34.51 43.40 61.51 

4 Replica 1 62.78 42.42 105.20 33.93 23.84 31.15 54.99 160.19 
2 67.85 41.22 109.07 29.52 17.01 34.98 51.99 161.06 

Average 65.31 41.82 107.14 31.73 20.43 33.06 53.49 160.63 
Stdev 3.59 0.85 2.74 3.12 4.83 2.71 2.12 0.62 

Note: 
- PAH represented as mg/kg 
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Table A.4. (Continued) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

100:20:5 

0 Replica 1 81.40 63.34 144.74 83.58 29.31 21.73 83.58 228.32 
2 114.59 63.85 178.45 88.07 29.75 27.10 88.07 266.52 

Average 98.00 63.60 161.59 85.83 29.53 24.42 85.83 247.42 
Stdev 23.47 0.37 23.84 3.18 0.32 3.80 3.18 27.01 

1 Replica 1 26.02 27.64 53.66 128.50 39.12 25.24 128.50 182.15 
2 21.67 25.18 46.86 139.50 27.28 28.67 139.50 186.36 

Average 23.85 26.41 50.26 134.00 33.20 26.95 134.00 184.26 
Stdev 3.08 1.73 4.81 7.78 8.37 2.42 7.78 2.97 

2 Replica 1 84.02 42.36 126.38 73.81 30.75 19.90 73.81 200.19 
2 95.62 49.70 145.33 40.56 46.48 26.07 40.56 185.89 

Average 89.82 46.03 135.85 57.19 38.61 22.98 57.19 193.04 
Stdev 8.20 5.19 13.40 23.51 11.13 4.37 23.51 10.11 

3 Replica 1 112.24 54.53 166.78 92.82 57.05 29.76 92.82 259.59 
2 117.34 84.79 202.13 139.50 81.24 47.03 139.50 341.63 

Average 114.79 69.66 184.45 116.16 69.15 38.39 116.16 300.61 
Stdev 3.60 21.40 25.00 33.01 17.11 12.21 33.01 58.01 

4 Replica 1 74.11 55.73 129.85 73.81 43.82 25.94 73.81 203.66 
2 76.81 39.57 116.38 40.56 35.92 24.17 40.56 156.94 

Average 75.46 47.65 123.11 57.19 39.87 25.05 57.19 180.30 
Stdev 1.91 11.43 9.52 23.51 5.58 1.25 23.51 33.03 

Notes: 
- PAH represented as mg/kg 
- 100:20:5 represents PAH:N:P ratio 
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Table A.4. (Continued) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

1:32:13 

0 Replica 1 81.40 63.34 144.74 83.58 29.31 21.73 83.58 228.32 
2 114.59 63.85 178.45 88.07 29.75 27.10 88.07 266.52 

Average 98.00 63.60 161.59 85.83 29.53 24.42 85.83 247.42 
Stdev 23.47 0.37 23.84 3.18 0.32 3.80 3.18 27.01 

1 Replica 1 86.22 42.64 128.86 66.29 20.78 25.65 66.29 195.15 
2 129.95 54.63 184.58 97.75 31.37 35.06 97.75 282.33 

Average 108.09 48.63 156.72 82.02 26.08 30.35 82.02 238.74 
Stdev 30.92 8.47 39.40 22.25 7.49 6.66 22.25 61.64 

2 Replica 1 74.49 41.86 116.36 42.95 15.13 8.30 42.95 159.30 
2 73.86 42.60 116.46 32.82 15.50 13.15 32.82 149.28 

Average 74.18 42.23 116.41 37.88 15.32 10.72 37.88 154.29 
Stdev 0.45 0.52 0.07 7.16 0.26 3.43 7.16 7.09 

3 Replica 1 62.44 42.64 105.08 35.40 23.27 41.75 35.40 140.48 
2 59.33 41.92 101.25 32.14 19.90 40.41 32.14 133.39 

Average 60.88 42.28 103.16 33.77 21.59 41.08 33.77 136.93 
Stdev 2.20 0.51 2.71 2.30 2.38 0.95 2.30 5.01 

4 Replica 1 55.17 40.89 96.06 25.88 11.88 7.06 25.88 121.93 
2 83.92 42.75 126.67 50.55 23.15 30.82 50.55 177.22 

Average 69.54 41.82 111.36 38.21 17.51 18.94 38.21 149.58 
Stdev 20.33 1.32 21.64 17.45 7.97 16.80 17.45 39.09 

Notes: 
- PAH represented as mg/kg 
- 1:32:13 represent PAH:N:P ratio 
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Table A.4. (Continued) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

AS. + 
100:20:5 

0 Replica 1 81.40 63.34 144.74 83.58 29.31 21.73 83.58 228.32 
2 114.59 63.85 178.45 88.07 29.75 27.10 88.07 266.52 

Average 98.00 63.60 161.59 85.83 29.53 24.42 85.83 247.42 
Stdev 23.47 0.37 23.84 3.18 0.32 3.80 3.18 27.01 

1 Replica 1 26.83 28.00 54.83 84.08 31.85 24.49 84.08 138.91 
2 18.44 25.10 43.54 119.77 33.74 21.58 119.77 163.31 

Average 22.64 26.55 49.19 101.93 32.79 23.03 101.93 151.11 
Stdev 5.94 2.05 7.98 25.24 1.33 2.05 25.24 17.25 

2 Replica 1 98.49 45.93 144.42 89.39 36.72 22.59 89.39 233.81 
2 101.21 51.21 152.43 77.46 58.80 32.09 77.46 229.89 

Average 99.85 48.57 148.43 83.43 47.76 27.34 83.43 231.85 
Stdev 1.92 3.74 5.66 8.44 15.61 6.72 8.44 2.78 

3 Replica 1 118.83 52.62 171.45 84.08 58.30 37.48 84.08 255.53 
2 127.80 55.54 183.35 88.64 61.09 30.88 88.64 271.98 

Average 123.32 54.08 177.40 86.36 59.69 34.18 86.36 263.76 
Stdev 6.34 2.07 8.41 3.22 1.97 4.67 3.22 11.63 

4 Replica 1 114.90 55.38 170.28 89.39 49.55 30.50 89.39 259.67 
2 73.85 49.47 123.33 77.46 37.19 17.59 77.46 200.78 

Average 94.38 52.43 146.80 83.43 43.37 24.05 83.43 230.23 
Stdev 29.02 4.18 33.20 8.44 8.74 9.13 8.44 41.64 

Notes: 
- PAH represented as mg/kg 
- AS.: Bioaugmentation with activated sludge from the return line of a local wastewater 
treatment plant 
- 100:20:5 represents PAH:N:P ratio 
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Table A.4. (Continued) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

AS1 + 
100:20:5 + 

T80 

0 Replica 1 81.40 63.34 144.74 83.58 29.31 21.73 83.58 228.32 
2 114.59 63.85 178.45 88.07 29.75 27.10 88.07 266.52 

Average 98.00 63.60 161.59 85.83 29.53 24.42 85.83 247.42 
Stdev 23.47 0.37 23.84 3.18 0.32 3.80 3.18 27.01 

1 Replica 1 11.06 112.98 124.04 196.90 133.13 256.99 196.90 320.95 
2 11.43 116.63 128.06 258.32 200.33 418.45 258.32 386.39 

Average 11.25 114.81 126.05 227.61 166.73 337.72 227.61 353.67 
Stdev 0.26 2.58 2.84 43.43 47.52 114.17 43.43 46.27 

2 Replica 1 15.63 160.31 175.94 651.16 289.09 777.67 651.16 827.09 
2 16.65 160.22 176.87 419.69 261.77 728.75 419.69 596.56 

Average 16.14 160.27 176.40 535.42 275.43 753.21 535.42 711.82 
Stdev 0.72 0.06 0.66 163.67 19.32 34.60 163.67 163.01 

3 Replica 1 15.10 150.95 166.05 223.42 94.85 320.87 223.42 389.47 
2 15.73 177.23 192.95 449.89 278.17 951.67 449.89 642.84 

Average 15.41 164.09 179.50 336.65 186.51 636.27 336.65 516.15 
Stdev 0.44 18.58 19.02 160.14 129.63 446.04 160.14 179.16 

4 Replica 1 19.35 137.68 157.03 190.49 156.62 378.99 190.49 347.51 
2 18.64 142.55 161.19 402.03 323.66 961.21 402.03 563.22 

Average 18.99 140.12 159.11 296.26 240.14 670.10 296.26 455.37 
Stdev 0.50 3.44 2.94 149.58 118.11 411.69 149.58 152.53 

Notes: 
- PAH represented as mg/kg 
- AS1: Bioaugmentation with activated sludge from the return line of a swine waste project 
- 100:20:5 represent PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following weeks 
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Table A.5. pH Measurements for Phase I: Biotreatment Experiments involving Glucose 
and Tween 80 Amendments 

Wee 
k 

Glucose Tween 80 
Replica 

Average Stdev 
Replica 

Average Stdev1 2 1 2 

0 6.91 7.08 6.99 0.12 6.91 7.08 6.99 0.12 
1 6.33 6.43 6.38 0.07 6.64 6.63 6.64 0.01 
2 6.54 6.48 6.51 0.04 6.61 6.84 6.73 0.16 
3 6.78 6.82 6.80 0.03 6.51 6.56 6.54 0.04 
4 7.08 6.98 7.03 0.07 6.66 6.71 6.69 0.04 
5 7.22 7.21 7.22 0.01 6.98 7.10 7.04 0.08 
6 7.38 7.31 7.35 0.05 6.95 7.07 7.01 0.08 
7 6.98 7.03 7.01 0.04 6.89 6.91 6.90 0.01 
8 6.77 7.20 6.99 0.30 6.54 6.65 6.60 0.08 
9 7.37 7.50 7.44 0.09 6.96 6.87 6.92 0.06 
10 7.15 7.11 7.13 0.03 6.65 6.63 6.64 0.01 
11 7.10 7.20 7.15 0.07 6.70 6.70 6.70 0.00 
12 7.10 7.30 7.20 0.14 6.80 6.90 6.85 0.07 
13 6.90 7.10 7.00 0.14 5.90 6.60 6.25 0.49 
14 7.30 7.40 7.35 0.07 6.90 6.70 6.80 0.14 
15 7.30 7.20 7.25 0.07 6.40 6.20 6.30 0.14 
16 7.00 7.10 7.05 0.07 6.10 5.80 5.95 0.21 
17 7.11 6.87 6.99 0.17 6.00 5.32 5.66 0.48 
18 6.90 7.00 6.95 0.07 6.40 5.20 5.80 0.85 
19 6.60 6.60 6.60 0.00 5.70 4.90 5.30 0.57 
20 7.10 6.80 6.95 0.21 5.60 4.70 5.15 0.64 

Notes: 
- Glucose: 1,000 mg/l glucose addition weekly 
- Tween 80: 3% (w/w) Tween addition weekly 
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Table A.6. Dissolved Oxygen Readings for Phase I: Biotreatment Experiments involving 
Glucose and Tween 80 Amendments 

Wee 
k 

Glucose Tween80 
Replica 

Average Stdev 
Replica 

Average Stdev1 2 1 2 

0 3.46 3.66 3.56 0.14 3.46 3.66 3.56 0.14 
1 5.90 4.70 5.30 0.85 2.01 3.12 2.57 0.78 
2 3.23 3.50 3.37 0.19 3.62 3.11 3.37 0.36 
3 9.31 9.41 9.36 0.07 7.28 8.25 7.77 0.69 
4 5.88 6.27 6.08 0.28 7.01 6.31 6.66 0.49 
5 6.78 6.81 6.80 0.02 3.28 4.51 3.90 0.87 
6 4.29 4.01 4.15 0.20 1.37 1.70 1.54 0.23 
7 4.84 4.18 4.51 0.47 3.97 3.29 3.63 0.48 
8 4.24 4.54 4.39 0.21 3.22 2.98 3.10 0.17 
9 4.38 4.28 4.33 0.07 3.06 2.79 2.93 0.19 
10 3.39 3.53 3.46 0.10 2.94 2.80 2.87 0.10 
11 6.31 6.10 6.21 0.15 3.62 3.16 3.39 0.33 
12 2.98 2.89 2.94 0.06 2.13 1.94 2.04 0.13 
13 4.42 4.61 4.52 0.13 2.71 3.03 2.87 0.23 
14 3.42 3.63 3.53 0.15 1.50 1.08 1.29 0.30 
15 8.31 8.35 8.33 0.03 6.74 6.83 6.79 0.06 
16 2.91 2.98 2.95 0.05 1.67 2.41 2.04 0.52 
17 5.42 5.22 5.32 0.14 4.02 5.11 4.57 0.77 
18 4.05 4.50 4.28 0.32 4.86 5.07 4.97 0.15 
19 3.71 3.63 3.67 0.06 1.51 2.21 1.86 0.49 
20 3.71 3.64 3.68 0.05 1.32 1.05 1.19 0.19 

Notes: 
- DO represented as mg/l 
- Glucose: 1,000 mg/l glucose addition weekly 
- Tween 80: 3% (w/w) Tween addition weekly 



www.manaraa.com

222 

Table A.7. PAH Results for Phase I: Biotreatment Experiments involving Tween 80 and 
Glucose Amending 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Glucose 

0 Replica 1 81.40 63.34 144.74 83.58 29.31 21.73 83.58 228.32 
2 114.59 63.85 178.45 88.07 29.75 27.10 88.07 266.52 

Average 98.00 63.60 161.59 85.83 29.53 24.42 85.83 247.42 
Stdev 23.47 0.37 23.84 3.18 0.32 3.80 3.18 27.01 

1 Replica 1 44.94 13.56 58.50 16.56 5.17 0.91 22.64 81.14 
2 54.20 15.78 69.98 16.51 5.49 0.96 22.95 92.93 

Average 49.57 14.67 64.24 16.53 5.33 0.94 22.80 87.04 
Stdev 6.55 1.57 8.12 0.04 0.22 0.04 0.22 8.34 

2 Replica 1 51.58 6.77 58.36 7.54 0.00 3.41 10.94 69.30 
2 52.59 13.59 66.18 15.52 4.43 0.00 19.95 86.14 

Average 52.09 10.18 62.27 11.53 2.22 1.70 15.45 77.72 
Stdev 0.71 4.82 5.53 5.65 3.13 2.41 6.37 11.90 

3 Replica 1 39.86 6.57 46.43 8.77 1.80 0.00 10.57 56.99 
2 97.04 76.05 173.09 72.87 11.59 0.00 84.46 257.55 

Average 68.45 41.31 109.76 40.82 6.69 0.00 47.51 157.27 
Stdev 40.43 49.13 89.57 45.33 6.92 0.00 52.25 141.82 

4 Replica 1 117.76 96.77 214.54 70.84 0.00 0.00 70.84 285.37 
2 104.54 86.38 190.92 52.54 14.82 0.00 67.36 258.29 

Average 111.15 91.58 202.73 61.69 7.41 0.00 69.10 271.83 
Stdev 9.35 7.35 16.70 12.94 10.48 0.00 2.46 19.15 

5 Replica 1 105.50 80.62 186.12 75.09 14.21 0.00 89.30 275.42 
2 82.02 69.96 151.97 79.02 27.80 0.00 106.82 258.79 

Average 93.76 75.29 169.05 77.06 21.00 0.00 98.06 267.11 
Stdev 16.60 7.54 24.15 2.78 9.61 0.00 12.39 11.76 

6 Replica 1 88.80 73.88 162.68 45.03 0.00 0.00 45.03 207.71 
2 97.31 74.14 171.45 77.17 24.15 0.00 101.32 272.77 

Average 93.06 74.01 167.07 61.10 12.07 0.00 73.17 240.24 
Stdev 6.02 0.18 6.20 22.73 17.08 0.00 39.81 46.01 

Notes: 
- PAH represented as mg/kg 
- Glucose: 1,000 mg/l glucose addition weekly 
- Tween 80: 3% (w/w) Tween addition weekly 
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Table A.7. (Continued) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Glucose 

7 Replica 1 113.31 101.09 214.40 62.55 0.00 0.00 62.55 276.95 
2 122.77 91.71 214.47 102.54 37.15 11.52 151.22 365.69 

Average 118.04 96.40 214.44 82.55 18.58 5.76 106.89 321.32 
Stdev 6.69 6.63 0.05 28.28 26.27 8.15 62.70 62.75 

8 Replica 1 101.17 80.03 181.20 64.84 0.00 0.00 64.84 246.04 
2 314.10 253.04 567.14 254.43 39.54 0.00 293.97 861.11 

Average 207.64 166.54 374.17 159.64 19.77 0.00 179.41 553.58 
Stdev 150.56 122.33 272.90 134.06 27.96 0.00 162.02 434.92 

9 Replica 1 120.14 95.89 216.03 54.97 0.00 0.00 54.97 271.00 
2 119.69 72.44 192.14 24.80 0.00 0.00 24.80 216.94 

Average 119.92 84.17 204.08 39.88 0.00 0.00 39.88 243.97 
Stdev 0.32 16.58 16.90 21.33 0.00 0.00 21.33 38.22 

10 Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 137.54 64.02 201.56 0.00 0.00 0.00 0.00 201.56 

Average 68.77 32.01 100.78 0.00 0.00 0.00 0.00 100.78 
Stdev 97.25 45.27 142.52 0.00 0.00 0.00 0.00 142.52 

11 Replica 1 218.81 204.59 423.40 130.57 0.00 0.00 130.57 553.97 
2 179.38 89.36 268.74 106.80 0.00 0.00 106.80 375.55 

Average 199.09 146.98 346.07 118.69 0.00 0.00 118.69 464.76 
Stdev 27.88 81.48 109.36 16.81 0.00 0.00 16.81 126.16 

12 Replica 1 150.04 139.19 289.22 88.12 51.56 0.00 139.68 428.90 
2 147.06 109.79 256.84 91.63 55.08 0.00 146.72 403.56 

Average 148.55 124.49 273.03 89.88 53.32 0.00 143.20 416.23 
Stdev 2.11 20.79 22.90 2.49 2.49 0.00 4.98 17.92 

13 Replica 1 149.69 82.23 231.91 96.19 0.00 0.00 96.19 328.11 
2 152.63 125.07 277.70 105.80 0.00 0.00 105.80 383.50 

Average 151.16 103.65 254.81 101.00 0.00 0.00 101.00 355.80 
Stdev 2.08 30.29 32.37 6.80 0.00 0.00 6.80 39.17 

Notes: 
- PAH represented as mg/kg 
- Glucose: 1,000 mg/l glucose addition weekly 
- Tween 80: 3% (w/w) Tween addition weekly 



www.manaraa.com

224 

Table A.7. (Continued) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Glucose 

14 Replica 1 147.48 73.80 221.28 86.11 0.00 0.00 86.11 307.39 
2 140.95 87.95 228.90 58.08 0.00 0.00 58.08 286.98 

Average 144.22 80.87 225.09 72.10 0.00 0.00 72.10 297.19 
Stdev 4.62 10.01 5.39 19.82 0.00 0.00 19.82 14.43 

15 Replica 1 131.12 0.00 131.12 0.00 0.00 0.00 0.00 131.12 
2 119.30 0.00 119.30 0.00 0.00 0.00 0.00 119.30 

Average 125.21 0.00 125.21 0.00 0.00 0.00 0.00 125.21 
Stdev 8.36 0.00 8.36 0.00 0.00 0.00 0.00 8.36 

16 Replica 1 187.65 0.00 187.65 0.00 0.00 0.00 0.00 187.65 
2 177.90 0.00 177.90 0.00 0.00 0.00 0.00 177.90 

Average 182.77 0.00 182.77 0.00 0.00 0.00 0.00 182.77 
Stdev 6.89 0.00 6.89 0.00 0.00 0.00 0.00 6.89 

17 Replica 1 177.00 0.00 177.00 0.00 0.00 0.00 0.00 177.00 
2 156.88 0.00 156.88 0.00 0.00 0.00 0.00 156.88 

Average 166.94 0.00 166.94 0.00 0.00 0.00 0.00 166.94 
Stdev 14.23 0.00 14.23 0.00 0.00 0.00 0.00 14.23 

18 Replica 1 97.29 0.00 97.29 0.00 0.00 0.00 0.00 97.29 
2 153.26 0.00 153.26 0.00 0.00 0.00 0.00 153.26 

Average 125.28 0.00 125.28 0.00 0.00 0.00 0.00 125.28 
Stdev 39.58 0.00 39.58 0.00 0.00 0.00 0.00 39.58 

19 Replica 1 140.16 0.00 140.16 0.00 0.00 0.00 0.00 140.16 
2 120.85 0.00 120.85 0.00 0.00 0.00 0.00 120.85 

Average 130.51 0.00 130.51 0.00 0.00 0.00 0.00 130.51 
Stdev 13.65 0.00 13.65 0.00 0.00 0.00 0.00 13.65 

20 Replica 1 60.87 0.00 60.87 0.00 0.00 0.00 0.00 60.87 
2 42.52 0.00 42.52 0.00 0.00 0.00 0.00 42.52 

Average 51.70 0.00 51.70 0.00 0.00 0.00 0.00 51.70 
Stdev 12.97 0.00 12.97 0.00 0.00 0.00 0.00 12.97 

Notes: 
- PAH represented as mg/kg 
- Glucose: 1,000 mg/l glucose addition weekly 
- Tween 80: 3% (w/w) Tween addition weekly 
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Table A.7. (Continued) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Tween 80 

0 Replica 1 81.40 63.34 144.74 83.58 29.31 21.73 83.58 228.32 
2 114.59 63.85 178.45 88.07 29.75 27.10 88.07 266.52 

Average 98.00 63.60 161.59 85.83 29.53 24.42 85.83 247.42 
Stdev 23.47 0.37 23.84 3.18 0.32 3.80 3.18 27.01 

1 Replica 1 42.66 14.87 57.53 24.55 4.68 0.39 29.62 87.15 
2 55.73 19.86 75.59 29.97 4.02 0.00 33.99 109.58 

Average 49.20 17.36 66.56 27.26 4.35 0.19 31.81 98.37 
Stdev 9.24 3.53 12.77 3.83 0.46 0.28 3.09 15.86 

2 Replica 1 42.77 11.12 53.89 24.67 4.25 0.00 28.92 82.81 
2 43.77 9.70 53.47 20.89 2.87 0.00 23.76 77.23 

Average 43.27 10.41 53.68 22.78 3.56 0.00 26.34 80.02 
Stdev 0.71 1.00 0.30 2.67 0.98 0.00 3.65 3.95 

3 Replica 1 66.46 55.60 122.06 98.65 19.22 0.00 117.87 239.93 
2 78.07 55.09 133.16 86.17 16.15 0.00 102.32 235.48 

Average 72.27 55.34 127.61 92.41 17.68 0.00 110.09 237.70 
Stdev 8.21 0.36 7.85 8.82 2.17 0.00 10.99 3.14 

4 Replica 1 75.35 69.99 145.34 127.54 25.11 0.00 152.66 298.00 
2 69.86 54.25 124.11 96.65 18.66 0.00 115.31 239.42 

Average 72.61 62.12 134.73 112.10 21.89 0.00 133.99 268.71 
Stdev 3.88 11.13 15.01 21.84 4.56 0.00 26.41 41.42 

5 Replica 1 92.86 75.16 168.02 137.45 34.32 0.00 171.76 339.78 
2 79.89 59.65 139.54 105.17 19.99 0.00 125.16 264.70 

Average 86.38 67.41 153.78 121.31 27.15 0.00 148.46 302.24 
Stdev 9.17 10.97 20.14 22.82 10.13 0.00 32.96 53.09 

6 Replica 1 63.09 47.96 111.05 87.96 8.21 0.00 96.17 207.21 
2 59.65 43.42 103.08 88.45 17.90 0.00 106.35 209.43 

Average 61.37 45.69 107.06 88.21 13.05 0.00 101.26 208.32 
Stdev 2.43 3.21 5.64 0.35 6.85 0.00 7.20 1.57 

Notes: 
- PAH represented as mg/kg 
- Glucose: 1,000 mg/l glucose addition weekly 
- Tween 80: 3% (w/w) Tween addition weekly 
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Table A.7. (Continued) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Tween 80 

7 Replica 1 94.32 74.69 169.01 177.08 17.70 0.00 194.78 363.78 
2 81.10 54.65 135.75 108.56 20.22 0.00 128.78 264.53 

Average 87.71 64.67 152.38 142.82 18.96 0.00 161.78 314.16 
Stdev 9.34 14.17 23.51 48.45 1.79 0.00 46.66 70.18 

8 Replica 1 82.84 63.16 146.00 126.45 12.28 0.00 138.74 284.74 
2 77.92 49.85 127.76 108.77 13.10 0.00 121.87 249.63 

Average 80.38 56.50 136.88 117.61 12.69 0.00 130.30 267.18 
Stdev 3.48 9.41 12.90 12.50 0.57 0.00 11.93 24.82 

9 Replica 1 79.45 32.61 112.06 101.82 0.00 0.00 101.82 213.88 
2 69.36 28.97 98.33 69.22 0.00 0.00 69.22 167.54 

Average 74.40 30.79 105.19 85.52 0.00 0.00 85.52 190.71 
Stdev 7.14 2.58 9.71 23.05 0.00 0.00 23.05 32.77 

10 Replica 1 291.89 128.76 420.65 544.69 59.79 0.00 604.48 1025.13 
2 112.01 0.00 112.01 169.04 0.00 0.00 169.04 281.05 

Average 201.95 64.38 266.33 356.86 29.90 0.00 386.76 653.09 
Stdev 127.20 91.05 218.25 265.62 42.28 0.00 307.90 526.14 

11 Replica 1 108.57 39.69 148.26 159.70 34.53 0.00 194.23 342.49 
2 0.00 21.50 21.50 121.74 0.00 0.00 121.74 143.23 

Average 54.29 30.59 84.88 140.72 17.27 0.00 157.99 242.86 
Stdev 76.77 12.86 89.63 26.84 24.42 0.00 51.26 140.90 

12 Replica 1 103.23 41.20 144.43 170.11 37.65 0.00 207.76 352.19 
2 88.26 41.99 130.25 165.04 0.00 0.00 165.04 295.29 

Average 95.74 41.60 137.34 167.57 18.83 0.00 186.40 323.74 
Stdev 10.58 0.56 10.03 3.59 26.62 0.00 30.21 40.24 

13 Replica 1 135.83 69.69 205.52 186.42 0.00 0.00 186.42 391.94 
2 96.82 43.12 139.95 121.56 0.00 0.00 121.56 261.50 

Average 116.32 56.41 172.73 153.99 0.00 0.00 153.99 326.72 
Stdev 27.58 18.79 46.37 45.87 0.00 0.00 45.87 92.23 

Notes: 
- PAH represented as mg/kg 
- Glucose: 1,000 mg/l glucose addition weekly 
- Tween 80: 3% (w/w) Tween addition weekly 
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Table A.7. (Continued) 

Condition Wee 
k 

PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Tween 80 

14 Replica 1 124.81 42.74 167.55 159.79 0.00 0.00 159.79 327.34 
2 130.96 61.72 192.68 232.58 52.84 0.00 285.42 478.10 

Average 127.89 52.23 180.11 196.19 26.42 0.00 222.61 402.72 
Stdev 4.35 13.42 17.77 51.47 37.36 0.00 88.83 106.61 

15 Replica 1 254.14 0.00 254.14 219.68 0.00 0.00 219.68 473.82 
2 292.79 0.00 292.79 171.30 0.00 0.00 171.30 464.09 

Average 273.46 0.00 273.46 195.49 0.00 0.00 195.49 468.95 
Stdev 27.33 0.00 27.33 34.21 0.00 0.00 34.21 6.89 

16 Replica 1 149.27 0.00 149.27 136.72 0.00 0.00 136.72 285.98 
2 90.42 0.00 90.42 55.15 0.00 0.00 55.15 145.58 

Average 119.85 0.00 119.85 95.93 0.00 0.00 95.93 215.78 
Stdev 41.61 0.00 41.61 57.67 0.00 0.00 57.67 99.28 

17 Replica 1 86.55 0.00 86.55 49.74 0.00 0.00 49.74 136.30 
2 88.85 0.00 88.85 0.00 0.00 0.00 0.00 88.85 

Average 87.70 0.00 87.70 24.87 0.00 0.00 24.87 112.57 
Stdev 1.62 0.00 1.62 35.17 0.00 0.00 35.17 33.55 

18 Replica 1 133.09 0.00 133.09 116.44 0.00 0.00 116.44 249.53 
2 85.57 0.00 85.57 134.17 462.84 0.00 597.01 682.58 

Average 109.33 0.00 109.33 125.30 231.42 0.00 356.72 466.05 
Stdev 33.60 0.00 33.60 12.54 327.28 0.00 339.81 306.21 

19 Replica 1 68.60 0.00 68.60 0.00 0.00 0.00 0.00 68.60 
2 81.60 0.00 81.60 0.00 0.00 0.00 0.00 81.60 

Average 75.10 0.00 75.10 0.00 0.00 0.00 0.00 75.10 
Stdev 9.20 0.00 9.20 0.00 0.00 0.00 0.00 9.20 

20 Replica 1 48.83 0.00 48.83 29.07 0.00 0.00 29.07 77.90 
2 50.23 0.00 50.23 0.00 0.00 0.00 0.00 50.23 

Average 49.53 0.00 49.53 14.54 0.00 0.00 14.54 64.07 
Stdev 0.99 0.00 0.99 20.56 0.00 0.00 20.56 19.57 

Notes: 
- PAH represented as mg/kg 
- Glucose: 1,000 mg/l glucose addition weekly 
- Tween 80: 3% (w/w) Tween addition weekly 
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Notes: 

2-ring PAH: Naphthalene 
3-ring PAHs: Acenaphthylene, Acenaphthene, Fluorene, Anthracene, and Phenanthrene 
4-ring PAHs: Fluoranthene, Pyrene, Benzo[a]anthracene, and Chrysene 
5-ring PAHs: Benzo[k]fluoranthene, Benzo[b]fluoranthene, Benzo[a]pyrene, and 
Dibenz[a,h]anthracene 
6-ring PAHs: Benzo[g,h,i]perylene and Indeno[1,2,3-cd]perylene 
Ave: Average 
Stdev: Standard deviation 
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Table B.1. PAH Results for Phase I: Ozonation of the Lake Superior Sediment 

Treatment Hour PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Ozone 

0 Replica 1 48.97 32.19 81.16 24.08 5.34 2.99 32.42 113.58 
2 49.96 32.45 82.42 25.41 9.97 3.30 38.68 121.10 

Average 49.46 32.32 81.79 24.74 7.66 3.15 35.55 117.34 
Stdev 0.70 0.19 0.89 0.93 3.27 0.22 4.43 5.32 

2 Replica 1 37.66 23.86 61.52 19.74 5.28 1.65 26.67 88.19 
2 35.65 21.78 57.43 19.33 6.13 2.28 27.73 85.16 

Average 36.65 22.82 59.47 19.53 5.70 1.97 27.20 86.68 
Stdev 1.42 1.47 2.89 0.29 0.60 0.44 0.75 2.14 

Notes: 
- PAH represented as mg/kg 
- 3% (w/w) ozone concentration at 2.5 scfh 
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Table B.2. PAH Results for Phase I: Peroxone Treatment of the Lake Superior Sediment 

Treatment Hour PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Peroxone 

0 Replica 1 48.97 32.19 81.16 24.08 5.34 2.99 32.42 113.58 
2 49.96 32.45 82.42 25.41 9.97 3.30 38.68 121.10 

Average 49.46 32.32 81.79 24.74 7.66 3.15 35.55 117.34 
Stdev 0.70 0.19 0.89 0.93 3.27 0.22 4.43 5.32 

2 Replica 1 31.37 12.47 43.84 10.47 1.52 0.02 12.02 55.85 
2 24.98 10.23 35.21 10.79 0.88 0.00 11.68 46.88 

Average 28.17 11.35 39.52 10.63 1.20 0.01 11.85 51.37 
Stdev 4.52 1.58 6.10 0.23 0.45 0.01 0.24 6.34 

4 Replica 1 44.20 12.76 56.96 9.30 0.00 0.00 9.30 66.26 
2 39.23 11.27 50.50 9.05 0.00 0.00 9.05 59.55 

Average 41.72 12.01 53.73 9.17 0.00 0.00 9.17 62.90 
Stdev 3.52 1.06 4.57 0.18 0.00 0.00 0.18 4.75 

6 Replica 1 40.44 9.65 50.09 7.82 0.00 0.00 7.82 57.92 
2 50.19 13.42 63.61 11.38 0.00 0.00 11.38 75.00 

Average 45.32 11.54 56.85 9.60 0.00 0.00 9.60 66.46 
Stdev 6.90 2.66 9.56 2.52 0.00 0.00 2.52 12.08 

9 Replica 1 184.47 124.10 308.56 42.40 0.00 0.00 42.40 350.97 
2 182.11 114.55 296.66 58.48 0.00 36.13 94.61 391.27 

Average 183.29 119.32 302.61 50.44 0.00 18.06 68.50 371.12 
Stdev 1.66 6.75 8.42 11.37 0.00 25.55 36.91 28.50 

12 Replica 1 138.47 88.69 227.16 100.38 23.72 0.00 124.11 351.26 
2 95.78 77.48 173.26 50.00 0.00 0.00 50.00 223.26 

Average 117.12 83.09 200.21 75.19 11.86 0.00 87.05 287.26 
Stdev 30.19 7.93 38.11 35.63 16.77 0.00 52.40 90.51 

15 Replica 1 142.04 73.65 215.69 61.93 0.00 0.00 61.93 277.61 
2 115.08 48.61 163.69 56.59 0.00 0.00 56.59 220.28 

Average 128.56 61.13 189.69 59.26 0.00 0.00 59.26 248.94 
Stdev 19.07 17.70 36.77 3.78 0.00 0.00 3.78 40.54 

Notes: 
- PAH represented as mg/kg 
- 3% (w/w) ozone concentration at 2.5 scfh 
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Table B.2. (Continued) 

Treatment Hour PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Peroxone 

18 Replica 1 183.95 118.54 302.49 116.65 35.38 0.00 152.03 454.52 
2 154.30 96.34 250.64 115.43 0.00 0.00 115.43 366.07 

Average 169.13 107.44 276.57 116.04 17.69 0.00 133.73 410.30 
Stdev 20.96 15.70 36.66 0.86 25.02 0.00 25.88 62.54 

21 Replica 1 81.33 62.96 144.29 60.90 0.00 0.00 60.90 205.19 
2 86.33 52.89 139.22 43.82 0.00 0.00 43.82 183.04 

Average 83.83 57.93 141.76 52.36 0.00 0.00 52.36 194.12 
Stdev 3.53 7.12 3.58 12.08 0.00 0.00 12.08 15.67 

Notes: 
- PAH represented as mg/kg 
- 3% (w/w) ozone concentration at 2.5 scfh 

Table B.3. Total Heterotrophic Counts for the Fate of Hydrogen Peroxide in Equilibrated 
Water Solutions 

Equilibrated Water Replica 
Average Stdev 

1 2 

Not-autoclaved 20 20 2 0 

Note: 
- Total heterotrophic counts represented as CFUs/ml 
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Table B.4. Hydrogen Peroxide Reactivity for the Fate of Hydrogen Peroxide in Equilibrated 
Water Solutions 

Run 1 2 
Hour Control Replica Control Replica 

1 2 Average Stdev 1 2 Average Stdev 
0 1000 1000 1000 1000 0.00 1000 1000 1000 1000 0.00 

0.5 1075 570 630 600 42.43 1030 485 500 493 10.61 
1 1060 500 540 520 28.28 1045 460 475 468 10.61 
2 1040 455 495 475 28.28 1055 395 400 398 3.54 
4 1010 485 540 513 38.89 985 310 315 313 3.54 
8 1025 470 485 478 10.61 1000 405 385 395 14.14 
22 1005 400 435 418 24.75 1075 315 327.5 321 8.84 

Run 3 4 
Hour Control Replica Control Replica 

1 2 Average Stdev 1 2 Average Stdev 
0 1000 1000 1000 1000 0.00 1000 1000 1000 1000 0.00 

0.5 1090 425 437.5 431 8.84 1000 440 440 440 0.00 
1 1035 360 357.5 359 1.77 945 455 435 445 14.14 
2 1005 350 340 345 7.07 980 415 405 410 7.07 
4 990 345 347.5 346 1.77 980 380 372.5 376 5.30 
8 945 360 372.5 366 8.84 945 330 355 343 17.68 
22 980 315 327.5 321 8.84 980 220 217.5 219 1.77 

Run 5 6 
Hour Control Replica Control Replica 

1 2 Average Stdev 1 2 Average Stdev 
0 1000 1000 1000 1000 0.00 1000 1000 1000 1000 0.00 

0.5 980 460 440 450 14.14 985 505 510 508 3.54 
1 965 420 412.5 416 5.30 1005 460 530 495 49.50 
2 950 405 400 403 3.54 1000 485 510 498 17.68 
4 975 385 392.5 389 5.30 995 510 495 503 10.61 
8 965 355 362.5 359 5.30 990 500 480 490 14.14 

22 975 350 350 350 0.00 995 500 490 495 7.07 

Notes: 
- Run 1-5 water samples were not autoclaved 
- Run 6 water samples were autoclaved 
- Hydrogen peroxide concentration represented as mg/l 
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Table B.5. Hydrogen Peroxide Reactivity Results for the Fate of Hydrogen Peroxide in 
Sediment Experiments (1,000 ppm H2O2 Experiments) 

Replica 
Hour 1 2 3 Average Stdev 

0 1000 1000 1000 1000 0 
2 45 25 65 45 20 
4 490 370 435 431.7 60.07 
6 175 90 160 141.7 45.37 

24 15 10 10 11.7 2.89 
26 750 760 925 811.7 98.28 
28 340 330 570 413.3 135.77 
30 205 165 330 233.3 86.07 
48 10 70 10 30 34.64 
60 5 5 10 6.7 2.89 
84 10 15 15 13.3 2.89 

Note: 
- Hydrogen peroxide concentration represented as mg/l 

Table B.6. PAHs Results for the Fate of Hydrogen Peroxide in Sediment (1,000 ppm H2O2

 Experiments) 

Treatment PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

1,000 
ppm 
H2O2 

Before 
HP 

Replica 1 98.00 63.60 161.59 85.83 29.53 24.42 139.78 301.37 
2 14.79 136.60 151.39 80.73 49.62 272.28 402.62 554.01 

Average 56.39 100.10 156.49 83.28 39.57 148.35 271.20 427.69 
Stdev 58.83 51.62 7.22 3.6 14.20 175.26 185.86 178.65 

After 
HP 

Replica 1 26.27 215.09 241.36 106.42 101.05 401.83 609.30 850.66 
2 25.44 218.41 243.85 218.51 96.61 124.93 440.05 683.90 

Average 25.85 216.75 242.61 162.46 98.83 263.38 524.67 767.28 
Stdev 0.59 2.35 1.76 79.26 3.14 195.80 119.68 117.92 

Notes: 
-HP: Indicates the addition of hydrogen peroxide 
- PAH represented as mg/kg 
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Table B.7. Hydrogen Peroxide Reactivity Results for the Fate of Hydrogen Peroxide in 
Sediment Experiments (10,000 ppm H2O2 Experiments) 

Replica 
Hour 1 2 3 Average Stdev 

0 10000 10000 10000 10000 0.00 
2 6800 7100 7150 7016.7 189.30 
4 4700 3850 4300 4283.3 425.25 
6 2350 1950 2200 2166.7 202.07 

24 0 200 0 66.7 115.47 
26 7150 8000 7250 7466.7 464.58 
28 3250 4100 3500 3616.7 436.84 
30 1900 2750 1850 2166.7 505.80 
48 50 100 100 83.3 28.87 
60 100 100 50 83.3 28.87 
84 100 50 50 66.7 28.87 

Note: 
- Hydrogen peroxide concentration represented as mg/l 

Table B.8. PAHs Results for the Fate of Hydrogen Peroxide in Sediment (10,000 ppm H2O2

 Experiments) 

Treatment PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

10,000 
ppm 
H2O2 

Before 

HP 

Replica 1 98.00 63.60 161.59 85.83 29.53 24.42 139.78 301.37 

2 14.79 136.60 151.39 80.73 49.62 272.28 402.62 554.01 
Average 56.39 100.10 156.49 83.28 39.57 148.35 271.20 427.69 
Stdev 58.83 51.62 7.22 3.6 14.20 175.26 185.86 178.65 

After 
HP 

Replica 1 0.00 455.60 455.60 221.10 192.79 22.84 436.73 892.32 
2 0.00 201.38 201.38 100.63 0.00 32.30 132.93 334.31 

Average 0.00 328.49 328.49 160.87 96.40 27.57 284.83 613.32 
Stdev 0.00 179.76 179.76 85.18 136.33 6.69 214.81 394.57 

Notes: 
- PAH represented as mg/kg 
- HP: Indicates the addition of hydrogen peroxide 
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Table B.9. Total Heterotrophic Counts for the Fate of Hydrogen Peroxide in Sediment 
Experiments (100,000 ppm H2O2 Experiments) 

Sediment Replica 
Ave Stdev

1 2 

Not-autoclaved 1.4e7 2.5e6 8.3e6 8.1e6 

Note: 
- Total heterotrophic counts represented as CFUs/ml 
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Table B.10. Hydrogen Peroxide Reactivity Results for the Fate of Hydrogen Peroxide in 
Sediment Experiments (100,000 ppm H2O2 Experiments) 

Autoclaved Not Autoclaved 
Replica Replica 

Hour 1 2 3 Average Stdev 1 2 3 Average Stdev 
1 94000 95500 92500 94000 1500 71500 71500 54000 65666.7 10103.6 
20 6500 5000 6000 5833.33 763.763 9000 7000 8500 8166.67 1040.83 
21 79000 76000 71500 75500 3774.92 101500 54500 51000 69000 28200.2 
23 51000 42000 40500 44500 5678.91 48000 42000 38500 42833.3 4804.51 
41 500 500 500 500 0 7000 3000 3500 4500 2179.45 
42 56000 60000 52000 56000 4000 48000 44000 43500 45166.7 2466.44 
43 43500 41000 38500 41000 2500 48500 43000 45000 45500 2783.88 
44 28000 24000 26500 26166.7 2020.73 42500 35000 36000 37833.3 4072.26 
45 12000 8000 10500 10166.7 2020.73 37000 26500 29500 31000 5408.33 
46 6000 3500 4000 4500 1322.88 36000 17500 26000 26500 9260.13 
61 500 500 500 500 0 500 500 500 500 0 
62 55500 48500 50500 51500 3605.55 58000 44000 42500 48166.7 8548.88 
63 34000 26500 32000 30833.3 3883.73 47000 36000 33500 38833.3 7182.15 
64 7500 2500 4000 4666.67 2565.8 29000 10000 13000 17333.3 10214.4 
83 500 500 500 500 0 1000 500 1000 833.333 288.675 
87 13500 8000 9000 10166.7 2929.73 26000 12000 13000 17000 7810.25 
91 75000 71000 79000 75000 4000 75000 76000 59500 70166.7 9251.13 
92 58500 37000 40500 45333.3 11536.2 52500 28500 36500 39166.7 12220.2 
105 42500 39500 44500 42166.7 2516.61 50500 32000 39000 40500 9340.77 
106 35500 21500 31000 29333.3 7147.26 39500 14500 19500 24500 13228.8 
127 500 500 500 500 0 500 500 500 500 0 
130 54000 51500 51000 52166.7 1607.28 51500 47000 44000 47500 3774.92 
132 35500 29500 31000 32000 3122.5 31500 21500 15500 22833.3 8082.9 
135 20000 7000 8000 11666.7 7234.18 14500 4000 4000 7500 6062.18 

Note: 
- Hydrogen peroxide concentration represented as mg/l 
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Table B.10. (Continued) 

Autoclaved Not Autoclaved 
Replica Replica 

Hour 1 2 3 Average Stdev 1 2 3 Average Stdev 
149 1500 1000 1000 1166.67 288.675 1500 1000 1000 1166.67 288.675 
150 62000 51500 87500 67000 18513.5 46000 66500 49000 53833.3 11071.7 
151 53000 49500 47000 49833.3 3013.86 47000 41000 46000 44666.7 3214.55 
152 43500 38000 45500 42333.3 3883.73 37000 32500 33500 34333.3 2362.91 
154 32500 23500 25500 27166.7 4725.82 30000 18000 19000 22333.3 6658.33 
173 1000 1000 1500 1166.67 288.675 1000 1000 1000 1000 0 
174 44500 46000 47000 45833.3 1258.31 51000 55500 50500 52333.3 2753.79 
175 39500 38000 44000 40500 3122.5 42500 38500 35000 38666.7 3752.78 
177 34500 30000 33500 32666.7 2362.91 33000 27500 28000 29500 3041.38 
222 500 500 500 500 0 500 500 500 0.5 0 

Note: 
- Hydrogen peroxide concentration represented as mg/l 
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Table B.11. PAH Results for the Fate of Hydrogen Peroxide in Sediment Experiments 
(100,000 ppm H2O2 Experiments) 

Not Autoclaved 
Treatment PAH 

category 
2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

100,000 
ppm 
H2O2 

Before 
HP Replica 

1 98.00 63.60 161.59 85.83 29.53 24.42 139.78 301.37 
2 14.79 136.60 151.39 80.73 49.62 272.28 402.62 554.01 

Average 56.39 100.10 156.49 83.28 39.57 148.35 271.20 427.69 
Stdev 58.83 51.62 7.22 3.6 14.20 175.26 185.86 178.65 

After 
HP Replica 

1 0.00 129.65 129.65 82.29 70.51 224.78 377.58 507.23 
2 0.00 119.01 119.01 69.77 53.16 171.56 294.49 413.50 

Average 0.00 122.44 122.44 74.63 58.10 196.64 329.38 451.81 
Stdev 0.00 6.25 6.25 6.71 10.82 26.74 43.11 49.14 

Autoclaved 

100,000 

ppm 
H2O2 

Before 

HP Replica 

1 0.00 150.96 150.96 125.87 1019.27 329.28 1474.42 1625.3 
7 

2 14.62 123.93 138.54 93.06 407.34 353.74 854.14 992.69 
3 0.00 150.27 150.27 119.54 948.93 405.36 1473.82 1624.0 

9 
Average 4.87 141.72 146.59 112.82 791.85 362.79 1267.46 1414.0 

5 
Stdev 8.44 15.41 6.98 17.40 334.84 38.84 357.94 364.91 

After 
HP Replica 

1 0.00 120.42 120.42 75.78 40.80 38.56 155.15 275.57 
2 0.00 127.64 127.64 64.28 53.75 49.28 167.31 294.95 
3 0.00 121.14 121.14 77.43 45.66 41.01 164.11 285.25 

Average 0.00 123.07 123.07 72.50 46.74 42.95 162.19 285.26 
Stdev 0.00 3.97 3.97 7.16 6.54 5.62 6.31 9.69 

Notes: 
- PAH represented as mg/kg 
- HP: Indicates the addition of hydrogen peroxide 
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Table B.12. PAH Results for Fenton’s Reagent Treatment of the Lake Superior Sediment 
(25,000 mg/l H2O2 + 2,500 mg/l Fe2+) 

Dosing PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

0 Replica 1 86.91 68.52 155.43 76.07 17.75 0.00 93.82 249.25 
2 133.24 94.07 227.32 104.08 38.04 0.00 142.12 369.44 

Average 110.08 81.30 191.37 90.08 27.89 0.00 117.97 309.34 
Stdev 32.77 18.07 50.83 19.80 14.35 0.00 34.15 84.99 

1 Replica 1 91.93 72.89 164.82 81.05 18.39 0.00 99.45 264.26 
2 84.92 58.42 143.34 70.84 16.29 0.00 87.13 230.47 

Average 88.42 65.66 154.08 75.95 17.34 0.00 93.29 247.37 
Stdev 4.96 10.23 15.19 7.22 1.49 0.00 8.71 23.90 

2 Replica 1 93.67 71.67 165.35 46.55 0.00 0.00 46.55 211.90 
2 90.07 72.21 162.27 67.29 0.00 0.00 67.29 229.57 

Average 91.87 71.94 163.81 56.92 0.00 0.00 56.92 220.73 
Stdev 2.55 0.38 2.17 14.67 0.00 0.00 14.67 12.49 

3 Replica 1 106.46 79.13 185.59 72.65 0.00 0.00 72.65 258.24 
2 96.78 68.69 165.47 65.24 0.00 0.00 65.24 230.70 

Average 101.62 73.91 175.53 68.94 0.00 0.00 68.94 244.47 
Stdev 6.85 7.39 14.23 5.24 0.00 0.00 5.24 19.47 

4 Replica 1 183.41 103.45 286.86 47.13 0.00 0.00 47.13 333.99 
2 186.21 63.40 249.61 78.52 0.00 0.00 78.52 328.13 

Average 184.81 83.43 268.24 62.82 0.00 0.00 62.82 331.06 
Stdev 1.98 28.32 26.34 22.19 0.00 0.00 22.19 4.14 

5 Replica 1 186.21 32.24 218.45 32.44 0.00 0.00 32.44 250.90 
2 121.20 34.48 155.68 36.35 0.00 0.00 36.35 192.03 

Average 153.70 33.36 187.06 34.40 0.00 0.00 34.40 221.46 
Stdev 45.97 1.58 44.39 2.76 0.00 0.00 2.76 41.63 

6 Replica 1 101.05 0.00 101.05 0.00 0.00 0.00 0.00 101.05 
2 173.24 61.89 235.13 41.01 0.00 0.00 41.01 276.14 

Average 137.14 30.94 168.09 20.50 0.00 0.00 20.50 188.59 
Stdev 51.05 43.76 94.81 29.00 0.00 0.00 29.00 123.81 

Notes: - PAH represented as mg/kg 
- Dosing step no 4-7: 100,000 mg/l H2O2 + 10,000 mg/l Fe2+ 
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Table B.12. (Continued) 

Dosing PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

7 Replica 1 79.02 0.00 79.02 0.00 0.00 0.00 0.00 79.02 
2 83.14 0.00 83.14 0.00 0.00 0.00 0.00 83.14 

Average 81.08 0.00 81.08 0.00 0.00 0.00 0.00 81.08 
Stdev 2.91 0.00 2.91 0.00 0.00 0.00 0.00 2.91 

Notes: - PAH represented as mg/kg 
- Dosing step no 4-7: 100,000 mg/l H2O2 + 10,000 mg/l Fe2+ 

Table B.13. PAH Results for Fenton’s Reagent Treatment of the Lake Superior Sediment 
(100,000 mg/l H2O2 + 10,00 mg/l Fe2+) 

Dosing PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

0 Replica 1 90.93 73.14 164.08 77.37 17.65 0.00 95.01 259.09 
2 112.65 74.65 187.30 64.91 0.00 0.00 64.91 252.21 

Average 101.79 73.90 175.69 71.14 8.82 0.00 79.96 255.65 
Stdev 15.36 1.07 16.42 8.81 12.48 0.00 21.28 4.86 

1 Replica 1 155.65 121.39 277.04 0.00 0.00 0.00 0.00 277.04 
2 106.41 72.80 179.21 43.06 0.00 0.00 43.06 222.27 

Average 131.03 97.09 228.12 21.53 0.00 0.00 21.53 249.65 
Stdev 34.82 34.36 69.18 30.45 0.00 0.00 30.45 38.73 

2 Replica 1 92.29 81.60 173.89 47.31 0.00 0.00 47.31 221.20 
2 122.93 52.21 175.14 0.00 0.00 0.00 0.00 175.14 

Average 107.61 66.91 174.52 23.65 0.00 0.00 23.65 198.17 
Stdev 21.66 20.78 0.88 33.45 0.00 0.00 33.45 32.57 

3 Replica 1 100.90 54.26 155.16 30.93 0.00 0.00 30.93 186.09 
2 101.41 52.23 153.64 0.00 0.00 0.00 0.00 153.64 

Average 101.16 53.24 154.40 15.47 0.00 0.00 15.47 169.86 
Stdev 0.36 1.43 1.07 21.87 0.00 0.00 21.87 22.95 

Note: - PAH represented as mg/kg 
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Table B.13. (Continued) 

Dosing PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

4 Replica 1 211.12 146.42 357.54 54.18 0.00 0.00 54.18 
2 251.15 100.39 351.54 58.68 0.00 0.00 58.68 

Average 231.14 123.40 354.54 56.43 0.00 0.00 56.43 
Stdev 28.31 32.55 4.24 3.18 0.00 0.00 3.18 

5 Replica 1 251.15 0.00 251.15 0.00 0.00 0.00 0.00 
2 90.34 0.00 90.34 0.00 0.00 0.00 0.00 

Average 170.74 0.00 170.74 0.00 0.00 0.00 0.00 
Stdev 113.71 0.00 113.71 0.00 0.00 0.00 0.00 

6 Replica 1 198.02 0.00 198.02 0.00 0.00 0.00 0.00 
2 86.63 26.37 113.00 0.00 0.00 0.00 0.00 

Average 142.33 13.18 155.51 0.00 0.00 0.00 0.00 
Stdev 78.76 18.64 60.12 0.00 0.00 0.00 0.00 

7 Replica 1 42.98 0.00 42.98 0.00 0.00 0.00 0.00 
2 54.21 0.00 54.21 0.00 0.00 0.00 0.00 

Average 48.59 0.00 48.59 0.00 0.00 0.00 0.00 
Stdev 7.94 0.00 7.94 0.00 0.00 0.00 0.00 

Note: - PAH represented as mg/kg 
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Notes: 

2-ring PAH: Naphthalene 
3-ring PAHs: Acenaphthylene, Acenaphthene, Fluorene, Anthracene, and Phenanthrene 
4-ring PAHs: Fluoranthene, Pyrene, Benzo[a]anthracene, and Chrysene 
5-ring PAHs: Benzo[k]fluoranthene, Benzo[b]fluoranthene, Benzo[a]pyrene, and 
Dibenz[a,h]anthracene 
6-ring PAHs: Benzo[g,h,i] perylene and Indeno[1,2,3-cd]perylene 
Ave: Average 
Stdev: Standard deviation 



www.manaraa.com

245 

Table C.1. PAH Results for Chemical Priming of the Scioto River Sediment 

Condition Dosing PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Biotic 
Control 

0 
Replica 1 0.00 1.13 1.13 3.81 1.18 2.61 7.60 8.73 

2 0.00 2.33 2.33 10.63 6.65 6.01 23.29 25.62 
Average 0.00 1.73 1.73 7.22 3.91 4.31 15.44 17.17 

Stdev 0.00 0.85 0.85 4.82 3.87 2.41 11.10 11.94 

1 
Replica 1 0.00 0.91 0.91 8.62 5.46 0.28 14.37 15.27 

2 0.00 0.00 0.00 9.67 0.00 0.00 9.67 9.67 
Average 0.00 0.45 0.45 9.15 2.73 0.14 12.02 12.47 

Stdev 0.00 0.64 0.64 0.75 3.86 0.20 3.32 3.96 

2 
Replica 1 0.00 0.00 0.00 3.97 0.00 0.00 3.97 3.97 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 1.99 0.00 0.00 1.99 1.99 

Stdev 0.00 0.00 0.00 2.81 0.00 0.00 2.81 2.81 

3 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 
Replica 1 0.00 0.00 0.00 7.01 0.00 0.00 7.01 7.01 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 3.51 0.00 0.00 3.51 3.51 

Stdev 0.00 0.00 0.00 4.96 0.00 0.00 4.96 4.96 

6 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Notes: 
- PAH represented as mg/kg 
- Dosing step no. 1: 20,000 mg/l H2O2 + 2,000 mg/l Fe2+; steps no. 2-3: 50,000 mg/l H2O2 + 

5,000 mg/l Fe2+; steps no. 4-8: 100,000 mg/l H2O2 + 10,000 mg/l Fe2+ 
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Table C.1. (Continued) 

Condition Dosing PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Biotic 
Control 

7 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

8 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 100:20:5 

0 
Replica 1 0.00 1.96 1.96 8.79 8.44 7.44 24.68 26.64 

2 0.00 1.04 1.04 6.67 5.16 6.15 17.98 19.02 
Average 0.00 1.50 1.50 7.73 6.80 6.80 21.33 22.83 

Stdev 0.00 0.65 0.65 1.50 2.32 0.91 4.74 5.39 

1 
Replica 1 0.00 0.00 0.00 0.63 0.00 0.00 0.63 0.63 

2 0.00 3.80 3.80 12.53 0.46 1.62 14.60 18.41 
Average 0.00 1.90 1.90 6.58 0.23 0.81 7.61 9.52 

Stdev 0.00 2.69 2.69 8.42 0.32 1.14 9.88 12.57 

2 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 2.09 0.00 0.00 2.09 2.09 
Average 0.00 0.00 0.00 1.05 0.00 0.00 1.05 1.05 

Stdev 0.00 0.00 0.00 1.48 0.00 0.00 1.48 1.48 

3 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 12.08 0.00 0.00 12.08 12.08 
Average 0.00 0.00 0.00 6.04 0.00 0.00 6.04 6.04 
Stdev 0.00 0.00 0.00 8.54 0.00 0.00 8.54 8.54 

Notes: 
- PAH represented as mg/kg 
- Dosing step no. 1: 20,000 mg/l H2O2 + 2,000 mg/l Fe2+; steps no. 2-3: 50,000 mg/l H2O2 + 

5,000 mg/l Fe2+; steps no. 4-8: 100,000 mg/l H2O2 + 10,000 mg/l Fe2+ 

- 100:20:5 represent PAH:N:P ratio 
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Table C.1. (Continued) 

Condition Dosing PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs

 100:20:5 

5 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 1.88 0.00 0.00 1.88 1.88 
Average 0.00 0.00 0.00 0.94 0.00 0.00 0.94 0.94 

Stdev 0.00 0.00 0.00 1.33 0.00 0.00 1.33 1.33 

6 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

7 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

8 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

AS.+ 
100:20:5 

0 
Replica 1 0.00 0.01 0.01 1.54 0.00 1.96 3.50 3.51 

2 0.00 5.62 5.62 10.92 0.00 3.30 14.23 19.84 
Average 0.00 2.81 2.81 6.23 0.00 2.63 8.86 11.68 

Stdev 0.00 3.97 3.97 6.63 0.00 0.95 7.58 11.55 

1 
Replica 1 0.00 3.47 3.47 16.44 8.61 7.20 32.26 35.74 

2 0.00 1.94 1.94 10.88 1.79 0.00 12.67 14.60 
Average 0.00 2.70 2.70 13.66 5.20 3.60 22.46 25.17 

Stdev 0.00 1.09 1.09 3.93 4.83 5.09 13.85 14.94 

Notes: 
- PAH represented as mg/kg 
- Dosing step no. 1: 20,000 mg/l H2O2 + 2,000 mg/l Fe2+; steps no. 2-3: 50,000 mg/l H2O2 + 
5,000 mg/l Fe2+; steps no. 4-8: 100,000 mg/l H2O2 + 10,000 mg/l Fe2+ 

- AS.: Bioaugmentation with activated sludge from the return line of a local wastewater 
- 100:20:5 represent PAH:N:P ratio 
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Table C.1. (Continued) 

Condition Dosing PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

AS.+100:20:5 

2 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

6 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

7 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Notes: 
- PAH represented as mg/kg 
- Dosing step no. 1: 20,000 mg/l H2O2 + 2,000 mg/l Fe2+; steps no. 2-3: 50,000 mg/l H2O2 + 
5,000 mg/l Fe2+; steps no. 4-8: 100,000 mg/l H2O2 + 10,000 mg/l Fe2+ 

- AS: Bioaugmentation with activated sludge from the return line of a local wastewater 
- 100:20:5 represent PAH:N:P ratio 
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Table C.1. (Continued) 

Condition Dosing PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

AS.+100:20:5 8 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

AS.+ 100:20:5 
T80 

0 
Replica 1 0.25 23.19 23.45 38.00 17.40 4.60 60.00 83.45 

2 0.71 6.29 7.00 11.34 0.88 0.99 13.21 20.21 
Average 0.00 0.00 15.22 0.00 0.00 0.00 36.61 51.83 

Stdev 0.00 0.00 11.63 0.00 0.00 0.00 33.09 44.72 

1 
Replica 1 7.63 4.65 12.29 25.94 0.00 0.00 25.94 38.23 

2 7.35 4.12 11.47 54.94 0.00 0.00 54.94 66.41 
Average 0.00 0.00 11.88 0.00 0.00 0.00 40.44 52.32 

Stdev 0.00 0.00 0.58 0.00 0.00 0.00 20.50 19.93 

2 
Replica 1 1.32 6.68 8.00 20.72 0.00 0.00 20.72 28.72 

2 0.00 16.02 16.02 15.73 0.00 0.00 15.73 31.75 
Average 0.00 0.00 12.01 0.00 0.00 0.00 18.22 30.23 

Stdev 0.00 0.00 5.68 0.00 0.00 0.00 3.53 2.15 

3 
Replica 1 0.00 26.71 26.71 17.53 0.00 0.00 17.53 44.24 

2 0.00 17.56 17.56 9.75 0.00 0.00 9.75 27.32 
Average 0.00 0.00 22.14 0.00 0.00 0.00 13.64 35.78 

Stdev 0.00 0.00 6.47 0.00 0.00 0.00 5.50 11.97 

4 
Replica 1 0.00 11.44 11.44 6.80 0.00 0.00 6.80 18.25 

2 0.00 27.92 27.92 2.36 0.00 0.00 2.36 30.28 
Average 0.00 0.00 19.68 0.00 0.00 0.00 4.58 24.27 

Stdev 0.00 0.00 11.65 0.00 0.00 0.00 3.14 8.51 

Notes: 
- PAH represented as mg/kg 
- Dosing step no. 1: 20,000 mg/l H2O2 + 2,000 mg/l Fe2+; steps no. 2-3: 50,000 mg/l H2O2 + 
5,000 mg/l Fe2+; steps no. 4-8: 100,000 mg/l H2O2 + 10,000 mg/l Fe2+ 

- AS.: Bioaugmentation with activated sludge from the return line of a local wastewater 
- 100:20:5 represent PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following weeks 
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Table C.1. (Continued) 

Condition Dosing PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

AS. + 100:20:5 
T80 

5 
Replica 1 0.00 16.15 16.15 5.61 0.00 0.00 5.61 21.76 

2 0.00 12.67 12.67 1.46 0.00 0.00 1.46 14.13 
Average 0.00 0.00 14.41 0.00 0.00 0.00 3.53 17.94 

Stdev 0.00 0.00 2.46 0.00 0.00 0.00 2.94 5.39 

6 
Replica 1 0.00 2.41 2.41 0.00 0.00 0.00 0.00 2.41 

2 0.00 3.91 3.91 0.00 0.00 0.00 0.00 3.91 
Average 0.00 0.00 3.16 0.00 0.00 0.00 0.00 3.16 

Stdev 0.00 0.00 1.06 0.00 0.00 0.00 0.00 1.06 

7 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.39 0.39 0.00 0.00 0.00 0.00 0.39 
Average 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.20 

Stdev 0.00 0.00 0.28 0.00 0.00 0.00 0.00 0.28 

8 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Notes: 
- PAH represented as mg/kg 
- Dosing step no. 1: 20,000 mg/l H2O2 + 2,000 mg/l Fe2+; steps no. 2-3: 50,000 mg/l H2O2 + 
5,000 mg/l Fe2+; steps no. 4-8: 100,000 mg/l H2O2 + 10,000 mg/l Fe2+ 

- AS: Bioaugmentation with activated sludge from the return line of a local wastewater 
- 100:20:5 represent PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following weeks 
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Table C.2. Selected PAH Results for Chemical Priming of the Scioto River Sediment 

Dosing Condition Biotic Control  100:20:5 AS.+100:20:5 AS.+100:20:5+T80 
PAH 

Compound 
Phen Fluo BaA Phen Fluo BaA Phen Fluo BaA Phen Fluo BaA 

0 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.65 3.55 

2 0.00 0.00 0.00 0.00 4.41 0.00 0.00 1.67 1.97 0.00 2.74 3.40 
Average 0.00 0.00 0.00 0.00 2.20 0.00 0.00 0.84 0.99 0.00 2.19 3.47 

Stdev 0.00 0.00 0.00 0.00 3.12 0.00 0.00 1.18 1.40 0.00 0.78 0.10 

1 
Replica 1 0.00 0.48 6.48 0.00 0.63 0.00 0.00 1.11 12.05 1.73 6.93 9.60 

2 0.00 3.36 4.79 0.00 5.22 4.84 0.00 3.62 4.79 2.85 10.49 14.43 
Average 0.00 1.92 5.64 0.00 2.92 2.42 0.00 2.37 8.42 2.29 8.71 12.02 

Stdev 0.00 2.04 1.20 0.00 3.25 3.43 0.00 1.77 5.13 0.80 2.51 3.42 

2 
Replica 1 0.00 0.00 3.97 0.00 0.00 0.00 0.00 0.00 0.00 0.33 5.93 10.14 

2 0.00 0.00 0.00 0.00 2.09 0.00 0.00 0.00 0.00 5.05 3.52 8.58 
Average 0.00 0.00 1.99 0.00 1.05 0.00 0.00 0.00 0.00 2.69 4.73 9.36 

Stdev 0.00 0.00 2.81 0.00 1.48 0.00 0.00 0.00 0.00 3.34 1.71 1.10 

3 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.61 7.67 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.56 2.72 0.77 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.28 3.67 4.22 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.47 1.34 4.88 

4 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.44 3.54 0.00 

2 0.00 0.00 0.00 0.00 3.30 0.00 0.00 0.00 0.00 14.57 1.39 0.00 
Average 0.00 0.00 0.00 0.00 1.65 0.00 0.00 0.00 0.00 13.01 2.46 0.00 
Stdev 0.00 0.00 0.00 0.00 2.33 0.00 0.00 0.00 0.00 2.21 1.52 0.00 

5 
Replica 1 0.00 0.00 7.01 0.00 0.00 0.00 0.00 0.00 0.00 9.58 1.45 0.00 

2 0.00 0.00 0.00 0.00 1.88 0.00 0.00 0.00 0.00 12.67 0.00 0.00 
Average 0.00 0.00 3.51 0.00 0.94 0.00 0.00 0.00 0.00 11.13 0.72 0.00 

Stdev 0.00 0.00 4.96 0.00 1.33 0.00 0.00 0.00 0.00 2.18 1.02 0.00 

Notes: 
- PAH represented as mg/kg 
- Dosing step no. 1: 20,000 mg/l H2O2 + 2,000 mg/l Fe2+; steps no. 2-3: 50,000 mg/l H2O2 + 
5,000 mg/l Fe2+; steps no. 4-8: 100,000 mg/l H2O2 + 10,000 mg/l Fe2+ 

- AS.: Bioaugmentation with activated sludge from the return line of a local wastewater 
- 100:20:5 represent PAH:N:P ratio and T80: Tween 80 addition at 0.5% (w/w) the first week 
and 0.25% (w/w) the following weeks 
- Phen, Fluo, and BaA indicate phenanthrene, Fluoranthene, and Benzo[a]anthracene 
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Table C.2. (Continued) 

Dosing Condition Biotic Control  100:20:5 AS.+100:20:5 AS.+100:20:5+T80 
PAH 

Compound 
Phen Fluo BaA Phen Fluo BaA Phen Fluo BaA Phen Fluo BaA 

6 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.41 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.91 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.16 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.06 0.00 0.00 

7 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 

8 
Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Notes: 
- PAH represented as mg/kg 
- Dosing step no. 1: 20,000 mg/l H2O2 + 2,000 mg/l Fe2+; steps no. 2-3: 50,000 mg/l H2O2 + 
5,000 mg/l Fe2+; steps no. 4-8: 100,000 mg/l H2O2 + 10,000 mg/l Fe2+ 

- AS.: Bioaugmentation with activated sludge from the return line of a local wastewater 
- 100:20:5 represent PAH:N:P ratio 
- T80: Tween 80 addition at 0.5% (w/w) the first week and 0.25% (w/w) the following weeks 
- Phen, Fluo, and BaA indicate phenanthrene, Fluoranthene, and Benzo[a]anthracene 
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Notes: 

2-ring PAH: Naphthalene 
3-ring PAHs: Acenaphthylene, Acenaphthene, Fluorene, Anthracene, and Phenanthrene 
4-ring PAHs: Fluoranthene, Pyrene, Benzo[a]anthracene, and Chrysene 
5-ring PAHs: Benzo[k]fluoranthene, Benzo[b]fluoranthene, Benzo[a]pyrene, and 
Dibenz[a,h]anthracene 
6-ring PAHs: Benzo[g,h,i] perylene and Indeno[1,2,3-cd]perylene 
Ave: Average 
Stdev: Standard deviation 
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Table D.1. Total Heterotrophic Counts for the Bioslurry Experiments 

Condition Biotic Control Nutrients 

Day 1 2 Ave Stdev 1 2 Ave stdev 

0 1.4e7 2.5e6 8.3e6 8.1e6 7.5e6 1.1e7 9.3e6 2.1e6 

14 1.20e7 1.05e7 1.13e7 1.06e6 1.3e7 5.5e6 9.25e6 5.3e6 

21 3.55e7 8.00e6 2.18e7 1.94e7 1.7e7 3.35e7 2.53e7 1.17e7 

28 2.50e4 2.60e6 1.31e6 1.82e6 5.50e6 2.00e6 3.75e6 2.47e6 

79 N/A N/A - - 0 0 0 0 

165 TLTC 2.2e6 1.1e6 - 1.9e7 2.6e6 1.1e7 1.1e7 

Bio.+Nutrients Bio.+Nutrients+Ext.C. 

Day 1 2 Ave Stdev 1 2 Ave stdev 

0 3.5e6 9.50e6 6.50e6 4.2e6 8e6 3.4e6 5.7e6 3.3e6 

14 2.00e6 4.50e6 3.25e6 1.77e6 1.25e7 1.09e8 6.05e7 6.79e7 

21 1.08e8 1.50e7 6.15e7 6.57e7 2.76e8 2.80e7 1.52e8 1.75e7 

28 6.55e7 6.90e7 6.73e7 2.47e6 1.10e7 1.50e8 8.05e7 9.83e7 

79 N/A N/A - - N/A N/A - -

165 65 56 61 6.4 1.67e7 1.02e7 1.4e7 4.6e6 

Notes: 
- Bio.: Bioaugmentation with naphthalene degraders 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- Heterotrophic counts represented as CFUs/ml 
- Dosing steps no. 1 and 2: 25,000 H2O2 + 2,500 Fe2+; dosing steps no. 3 and 4: 50,000 H2O2 

+ 5,000 Fe2+; dosing steps no. 5 and 6: 100,000 H2O2 + 10,000 Fe2+ 

- TLTC: Indicates too little to count 
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Table D.2. pH Results for Phase II: Bioslurry Experiments 

Day 

Condition 
Biotic control Nutrients Bio.+ Nutrients Bio.+Nutrients+Ext.C. 

1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 
0 7.2 7.2 7.2 0.0 7.2 7.2 7.2 0.0 7.2 7.2 7.2 0.0 7.2 7.2 7.2 0.0 
2 7.1 7.0 7.1 0.1 6.8 6.9 6.9 0.1 6.9 6.8 6.9 0.1 6.7 6.6 6.7 0.1 
4 6.8 6.7 6.8 0.1 6.8 6.8 6.8 0.0 6.7 6.8 6.8 0.1 6.8 6.8 6.8 0.0 
7 6.4 6.4 6.4 0.0 6.3 6.3 6.3 0.0 6.3 6.3 6.3 0.0 6.5 6.4 6.5 0.1 
9 6.5 6.4 6.5 0.1 6.5 6.5 6.5 0.0 6.3 6.3 6.3 0.0 6.5 6.5 6.5 0.0 

11 7.0 7.0 7.0 0.0 6.9 6.9 6.9 0.0 6.9 6.9 6.9 0.0 6.9 6.8 6.9 0.1 
14 7.2 7.1 7.2 0.1 6.7 6.6 6.7 0.1 6.6 6.6 6.6 0.0 6.5 6.4 6.5 0.1 
adj N/A N/A - - 6.9 6.9 6.9 0.0 6.8 7.2 7.0 0.3 7.1 6.9 7.0 0.1 
16 7.1 7.1 7.1 0.0 6.6 6.6 6.6 0.0 6.6 6.5 6.6 0.1 6.4 6.6 6.5 0.1 
adj N/A N/A - - 7.0 7.0 7.0 0.0 6.8 7.0 6.9 0.1 7.2 7.0 7.1 0.1 
18 7.1 7.0 7.1 0.1 6.4 6.4 6.4 0.0 6.3 6.3 6.3 0.0 6.2 6.2 6.2 0.0 
adj N/A N/A - - 7.2 7.0 7.1 0.1 6.9 7.1 7.0 0.1 7.2 6.9 7.1 0.2 
21 7.2 7.2 7.2 0.0 6.6 6.6 6.6 0.0 6.5 6.5 6.5 0.0 6.4 6.2 6.3 0.1 
adj N/A N/A - - 6.8 7.0 6.9 0.1 7.0 7.2 7.1 0.1 7.1 7.0 7.1 0.1 
23 7.2 7.2 7.2 0.0 6.6 6.8 6.7 0.1 6.4 6.8 6.6 0.3 6.5 6.5 6.5 0.0 
adj N/A N/A - - 7.0 6.8 6.9 0.1 7.1 6.8 7.0 0.2 7.0 7.0 7.0 0.0 
25 7.1 7.2 7.2 0.1 6.6 6.7 6.7 0.1 6.6 6.6 6.6 0.0 6.4 6.5 6.5 0.1 
adj N/A N/A - - 6.9 6.8 6.9 0.1 6.9 6.8 6.9 0.1 6.9 6.9 6.9 0.0 
28 7.1 7.2 7.2 0.1 6.5 6.6 6.6 0.1 6.3 6.3 6.3 0.0 6.3 6.0 6.2 0.2 
adj N/A N/A - - 7.0 6.9 7.0 0.1 7.0 7.0 7.0 0.0 7.1 6.8 7.0 0.2 
32 7.2 7.1 7.2 0.1 6.3 6.4 6.4 0.1 6.3 6.3 6.3 0.0 6.7 6.6 6.7 0.1 
adj N/A N/A - - 7.1 6.9 7.0 0.1 6.8 6.9 6.9 0.1 6.9 6.9 6.9 0.0 
35 7.5 7.5 7.5 0.0 6.1 5.9 6.0 0.1 6.4 6.8 6.6 0.3 7.0 6.8 6.9 0.1 
adj 7.1 7.1 7.1 0.0 6.9 6.9 6.9 0.0 7.0 6.8 6.9 0.1 7.0 6.8 6.9 0.1 
37 7.4 7.4 7.4 0.0 6.7 6.2 6.5 0.4 6.7 6.5 6.6 0.1 6.7 6.7 6.7 0.0 
adj 7.2 7.2 7.2 0.0 6.9 6.8 6.9 0.1 7.0 7.2 7.1 0.1 7.2 7.1 7.2 0.1 
39 7.3 7.2 7.3 0.1 6.7 6.4 6.6 0.2 6.7 6.7 6.7 0.0 6.6 6.8 6.7 0.1 
adj 7.2 N/A - - 7.0 6.9 7.0 0.1 6.9 7.0 7.0 0.1 7.2 N/A - -

Notes: N/A: Not available; adj: pH adjustment; Nutrients: 1,000 mg/l nitrate and 400 mg/l 
phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; Ext.C.: 1,000 mg/l 
glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 2.5% (w/w) 
Tween 80 additions 
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Table D.2. (Continued) 

Day 

Condition 
Biotic control Nutrients Bio.+ Nutrients Bio.+Nutrients+Ext.C. 

1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 
42 7.0 6.8 6.9 0.1 6.6 6.5 6.6 0.1 6.7 6.9 6.8 0.1 7.0 6.9 7.0 0.1 
44 7.1 7.0 7.1 0.1 6.7 6.7 6.7 0.0 6.6 6.7 6.7 0.1 6.9 6.8 6.9 0.1 
46 7.2 7.1 7.2 0.1 6.8 6.7 6.8 0.1 6.8 6.8 6.8 0.0 6.9 6.8 6.9 0.1 
49 7.0 7.0 7.0 0.0 6.7 6.7 6.7 0.0 6.7 6.8 6.8 0.1 7.0 6.7 6.9 0.2 
51 7.1 7.0 7.1 0.1 6.7 6.6 6.7 0.1 6.7 6.8 6.8 0.1 6.9 6.7 6.8 0.1 
53 7.2 7.1 7.2 0.1 N/A N/A - - 6.4 6.5 6.5 0.1 7.0 6.8 6.9 0.1 
adj N/A N/A - - N/A N/A - - 6.7 N/A - - N/A N/A - -
56 7.2 7.2 7.2 0.0 N/A N/A - - 6.7 6.6 6.7 0.1 7.0 6.8 6.9 0.1 
58 7.1 7.1 7.1 0.0 N/A N/A - - 6.6 6.6 6.6 0.0 6.9 6.8 6.9 0.1 
60 7.1 7.1 7.1 0.0 N/A N/A - - 6.7 6.7 6.7 0.0 6.7 6.7 6.7 0.0 
63 7.0 7.0 7.0 0.0 N/A N/A - - 6.6 6.5 6.6 0.1 6.8 6.7 6.8 0.1 
65 7.2 7.2 7.2 0.0 N/A N/A - - 6.4 6.5 6.5 0.1 6.8 6.7 6.8 0.1 
adj N/A N/A - - N/A N/A - - 6.7 N/A - - N/A N/A - -
67 7.1 7.0 7.1 0.1 N/A N/A - - 6.6 6.5 6.6 0.1 6.8 6.7 6.8 0.1 
70 7.2 7.1 7.2 0.1 N/A N/A - - 6.6 6.5 6.6 0.1 6.8 6.7 6.8 0.1 
72 7.1 7.2 7.2 0.1 N/A N/A - - 6.7 6.6 6.7 0.1 6.9 6.8 6.9 0.1 
74 7.0 7.0 7.0 0.0 N/A N/A - - 6.6 6.5 6.6 0.1 6.8 6.7 6.8 0.1 
77 7.3 7.3 7.3 0.0 N/A N/A - - 6.8 6.7 6.8 0.1 7.8 7.8 7.8 0.0 
79 7.1 7.1 7.1 0.0 4.8 4.7 4.8 0.1 6.6 6.7 6.7 0.1 8.0 7.4 7.7 0.4 
adj N/A N/A - - 6.5 6.6 6.6 0.1 N/A N/A - - 7.3 7.1 7.2 0.2 
81 7.1 7.0 7.1 0.1 6.2 6.2 6.2 0.0 6.5 6.7 6.6 0.1 8.1 7.2 7.7 0.6 
adj N/A N/A - - 6.6 6.6 6.6 0.0 N/A N/A - - 7.2 N/A - -
84 7.0 7.3 7.2 0.2 8.3 8.2 8.3 0.1 6.3 6.4 6.4 0.1 7.5 7.2 7.4 0.2 
adj N/A N/A - - 7.2 6.7 7.0 0.4 N/A N/A - - N/A N/A - -
86 7.1 7.3 7.2 0.1 8.2 8.1 8.2 0.1 6.5 6.6 6.6 0.1 6.7 7.5 7.1 0.6 
adj N/A N/A - - 7.4 7.3 7.4 0.1 N/A N/A - - N/A N/A - -
88 7.1 7.1 7.1 0.0 8.0 7.9 8.0 0.1 6.4 6.5 6.5 0.1 6.6 7.4 7.0 0.6 
91 7.2 7.2 7.2 0.0 8.0 8.0 8.0 0.0 6.4 6.6 6.5 0.1 5.8 7.3 6.6 1.1 

Notes: N/A: Not available; adj: pH adjustment; Nutrients: 1,000 mg/l nitrate and 400 mg/l 
phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; Ext.C.: 1,000 mg/l 
glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 2.5% (w/w) 
Tween 80 additions 
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Table D.2. (Continued) 

Day 

Condition 
Biotic control Nutrients Bio.+ Nutrients Bio.+Nutrients+Ext.C. 

1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 
93 7.1 7.2 7.2 0.1 7.9 7.9 7.9 0.0 6.5 6.6 6.6 0.1 5.7 7.3 6.5 1.1 
95 7.1 7.1 7.1 0.0 7.8 7.5 7.7 0.2 6.4 6.5 6.5 0.1 5.5 7.2 6.4 1.2 
adj N/A N/A - - N/A N/A - - N/A N/A - - 7.3 N/A - -
98 7.2 7.1 7.2 0.1 6.9 7.0 7.0 0.1 6.5 6.7 6.6 0.1 6.3 7.2 6.8 0.6 

100 7.1 7.2 7.2 0.1 6.9 7.0 7.0 0.1 6.5 6.6 6.6 0.1 6.2 7.3 6.8 0.8 
104 7.1 7.2 7.2 0.1 7.1 7.0 7.1 0.1 6.6 6.7 6.7 0.1 6.0 7.3 6.7 0.9 
109 7.1 7.2 7.2 0.1 7.0 7.1 7.1 0.1 6.6 6.7 6.7 0.1 5.4 7.3 6.4 1.3 
111 7.2 7.1 7.2 0.1 7.1 6.9 7.0 0.1 6.6 6.6 6.6 0.0 6.9 7.3 7.1 0.3 
114 7.2 7.1 7.2 0.1 7.1 7.0 7.1 0.1 6.5 6.7 6.6 0.1 7.0 7.3 7.2 0.2 
117 7.2 7.3 7.3 0.1 7.1 7.1 7.1 0.0 6.6 6.7 6.7 0.1 7.0 7.3 7.2 0.2 
119 7.1 7.2 7.2 0.1 7.0 7.1 7.1 0.1 6.6 6.6 6.6 0.0 6.8 7.3 7.1 0.4 
126 7.0 7.0 7.0 0.0 6.8 6.8 6.8 0.0 N/A N/A - - 6.6 7.0 6.8 0.3 
129 7.1 7.1 7.1 0.0 6.9 6.9 6.9 0.0 N/A N/A - - 6.8 7.2 7.0 0.3 
131 7.0 7.2 7.1 0.1 6.3 6.2 6.3 0.1 5.7 5.7 5.7 0.0 7.7 7.2 7.5 0.4 
adj N/A N/A - - 6.9 7.0 7.0 0.0 7.1 7.2 7.2 0.1 7.6 7.2 7.4 0.3 
133 7.2 7.2 7.2 0.0 6.5 6.4 6.5 0.1 6.8 6.5 6.7 0.2 7.6 7.1 7.4 0.4 
136 7.3 7.5 7.4 0.1 6.3 6.5 6.4 0.1 6.6 6.3 6.5 0.2 5.9 7.0 6.5 0.8 
138 7.2 7.5 7.4 0.2 7.0 6.5 6.8 0.4 6.6 6.7 6.7 0.1 7.0 7.2 7.1 0.1 
140 7.3 7.3 7.3 0.0 7.0 6.6 6.8 0.3 6.5 6.4 6.5 0.1 6.7 7.2 7.0 0.4 
143 7.2 7.3 7.3 0.1 6.9 6.6 6.8 0.2 6.4 6.2 6.3 0.1 6.4 7.0 6.7 0.4 
145 7.2 7.3 7.3 0.1 6.8 6.5 6.7 0.2 6.4 6.1 6.3 0.2 6.4 7.0 6.7 0.4 
150 7.2 7.3 7.3 0.1 6.9 6.4 6.7 0.4 6.4 6.1 6.3 0.2 6.4 7.0 6.7 0.4 
152 7.5 7.4 7.5 0.1 6.8 6.5 6.7 0.2 6.3 6.4 6.4 0.1 6.2 6.9 6.6 0.5 
154 7.3 7.4 7.4 0.1 7.0 6.6 6.8 0.3 6.5 6.5 6.5 0.0 6.3 7.1 6.7 0.6 
157 7.3 7.4 7.4 0.1 7.0 6.6 6.8 0.3 6.5 6.5 6.5 0.0 6.3 7.1 6.7 0.6 
164 7.1 7.3 7.2 0.1 6.2 6.0 6.1 0.1 6.0 6.0 6.0 0.0 5.9 7.2 6.6 0.9 
adj N/A N/A - - 7.3 6.7 7.0 0.4 7.1 7.1 7.1 0.0 6.5 N/A - -
168 7.1 7.2 7.2 0.1 6.5 6.0 6.3 0.4 6.5 6.4 6.5 0.1 5.9 7.2 6.6 0.9 

Notes: N/A: Not available; adj: pH adjustment; Nutrients: 1,000 mg/l nitrate and 400 mg/l 
phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; Ext.C.: 1,000 mg/l 
glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 2.5% (w/w) 
Tween 80 additions 
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Table D.3. Dissolved Oxygen Readings for Phase II: Bioslurry Experiments 

Day 

Condition 
Biotic control Nutrients Bio.+ Nutrients Bio.+Nutrients+Ext.C. 

1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2 3.0 2.6 2.8 0.3 2.3 1.7 2.0 0.4 0.2 0.2 0.2 0.0 0.2 0.3 0.3 0.0 
4 2.7 3.3 3.0 0.4 2.4 3.3 2.9 0.6 0.9 1.2 1.0 0.2 0.1 0.1 0.1 0.0 
7 1.6 1.6 1.6 0.0 3.1 1.5 2.3 1.2 0.8 1.9 1.3 0.8 1.6 1.3 1.4 0.2 
9 5.5 5.7 5.6 0.1 5.3 5.4 5.4 0.1 5.6 5.5 5.5 0.1 5.2 5.3 5.3 0.1 

11 4.8 5.0 4.9 0.2 5.3 5.2 5.2 0.1 4.0 4.9 4.5 0.7 5.0 5.0 5.0 0.0 
14 4.4 4.5 4.5 0.1 5.2 5.1 5.2 0.1 5.2 5.2 5.2 0.0 5.1 5.1 5.1 0.0 
16 5.1 5.3 5.2 0.2 5.3 5.3 5.3 0.0 5.0 5.3 5.1 0.2 4.8 4.8 4.8 0.0 
18 6.2 5.1 5.6 0.8 5.4 5.9 5.6 0.4 5.6 5.8 5.7 0.2 5.6 5.5 5.5 0.1 
21 5.5 5.2 5.3 0.2 4.4 5.0 4.7 0.5 4.6 4.7 4.7 0.0 5.2 5.0 5.1 0.2 
23 5.8 6.3 6.1 0.3 6.0 6.0 6.0 0.0 5.8 5.8 5.8 0.0 5.4 5.8 5.6 0.3 
25 6.2 6.3 6.2 0.1 6.2 6.1 6.1 0.1 5.9 5.8 5.8 0.0 5.4 5.8 5.6 0.3 
30 5.6 5.7 5.7 0.1 5.5 5.6 5.6 0.1 5.3 5.4 5.4 0.0 5.7 5.7 5.7 0.0 
32 5.7 5.7 5.7 0.0 5.3 5.3 5.3 0.0 4.8 5.3 5.1 0.4 5.3 5.4 5.4 0.1 
35 5.7 5.7 5.7 0.0 5.4 5.0 5.2 0.3 5.9 5.6 5.8 0.2 5.7 5.7 5.7 0.0 
37 5.4 5.4 5.4 0.0 5.4 4.9 5.1 0.4 5.6 5.7 5.7 0.0 5.4 5.7 5.6 0.2 
39 5.6 5.7 5.7 0.1 5.5 5.6 5.6 0.1 5.3 5.4 5.4 0.0 5.7 5.7 5.7 0.0 
42 5.2 5.2 5.2 0.0 5.5 5.6 5.6 0.1 5.5 5.6 5.5 0.0 5.5 5.5 5.5 0.0 
44 5.5 5.4 5.4 0.0 5.4 4.4 4.9 0.7 5.5 5.5 5.5 0.0 5.2 5.4 5.3 0.2 
46 5.1 4.9 5.0 0.1 5.2 4.2 4.7 0.7 5.1 4.4 4.7 0.5 4.9 4.9 4.9 0.0 
49 5.5 5.3 5.4 0.1 5.6 5.5 5.5 0.1 5.2 5.9 5.5 0.5 5.4 5.4 5.4 0.0 
51 5.1 5.1 5.1 0.0 5.1 5.2 5.2 0.1 5.2 4.9 5.1 0.2 5.2 5.2 5.2 0.0 
53 7.8 7.0 7.4 0.6 N/A N/A - - 6.9 6.3 6.6 0.4 7.0 7.0 7.0 0.0 
56 7.0 6.8 6.9 0.1 N/A N/A - - 7.0 6.9 6.9 0.1 6.7 6.9 6.8 0.1 
58 6.4 5.7 6.0 0.5 N/A N/A - - 6.1 6.0 6.1 0.1 6.9 7.0 7.0 0.1 

Notes: Dissolved oxygen represented as ppm; N/A: Not available; Nutrients: 1,000 mg/l nitrate 
and 400 mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; Ext.C.: 
1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 2.5% 
(w/w) Tween 80 additions 
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Table D.3. (Continued) 

Day 

Condition 
Biotic control Nutrients Bio.+ Nutrients Bio.+Nutrients+Ext.C. 

1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 
60 7.1 6.8 6.9 0.2 N/A N/A - - 6.9 6.8 6.9 0.1 6.8 6.8 6.8 0.0 
63 6.9 6.8 6.8 0.0 N/A N/A - - 6.9 6.8 6.9 0.1 6.6 6.7 6.7 0.1 
65 6.8 6.8 6.8 0.0 N/A N/A - - 6.8 6.9 6.8 0.1 6.6 6.8 6.7 0.1 
67 6.8 6.7 6.8 0.1 N/A N/A - - 6.6 6.8 6.7 0.1 6.7 6.7 6.7 0.0 
70 7.0 7.0 7.0 0.0 N/A N/A - - 7.0 6.9 7.0 0.1 6.8 6.9 6.9 0.1 
72 6.8 6.8 6.8 0.0 N/A N/A - - 6.8 6.9 6.9 0.0 6.8 6.9 6.8 0.1 
74 6.6 6.4 6.5 0.1 N/A N/A - - 6.5 6.5 6.5 0.0 6.4 6.6 6.5 0.1 
77 6.7 6.6 6.7 0.1 N/A N/A - - 6.7 6.6 6.7 0.1 0.1 0.0 0.1 0.0 
79 6.3 6.5 6.4 0.1 6.6 6.5 6.6 0.1 6.7 6.3 6.5 0.3 3.9 0.0 2.0 2.8 
81 6.4 6.4 6.4 0.0 6.0 5.7 5.9 0.2 6.4 6.1 6.3 0.2 4.9 0.0 2.4 3.4 
84 6.4 6.5 6.5 0.1 6.2 5.8 6.0 0.3 6.5 6.3 6.4 0.1 4.6 0.0 2.3 3.2 
86 6.8 6.5 6.7 0.2 6.5 6.3 6.4 0.1 6.5 6.3 6.4 0.1 5.0 0.6 2.8 3.1 
88 6.5 6.7 6.6 0.2 6.5 6.2 6.4 0.2 6.5 6.4 6.4 0.1 0.3 0.1 0.2 0.1 
91 6.4 6.4 6.4 0.0 6.3 6.2 6.3 0.1 6.4 6.3 6.4 0.1 4.7 0.1 2.4 3.3 
93 6.2 6.2 6.2 0.0 6.3 6.1 6.2 0.2 6.4 6.2 6.3 0.1 5.1 0.1 2.6 3.6 
95 6.1 6.0 6.1 0.1 6.0 5.4 5.7 0.4 6.3 6.2 6.2 0.1 5.5 0.0 2.8 3.9 

100 6.1 6.1 6.1 0.0 6.1 5.7 5.9 0.3 6.2 6.1 6.1 0.1 4.8 0.1 2.4 3.3 
102 6.2 6.2 6.2 0.0 6.2 6.1 6.1 0.1 6.1 6.1 6.1 0.0 4.2 0.1 2.1 2.9 
107 6.1 6.1 6.1 0.0 6.2 6.0 6.1 0.1 6.1 6.1 6.1 0.0 5.7 0.1 2.9 3.9 
109 6.1 6.0 6.0 0.1 6.1 5.9 6.0 0.2 6.1 6.1 6.1 0.0 3.0 0.1 1.5 2.1 
112 6.0 5.9 6.0 0.1 6.1 6.0 6.0 0.0 6.0 6.0 6.0 0.0 3.8 0.1 1.9 2.7 
114 5.9 5.9 5.9 0.0 6.0 5.9 6.0 0.1 5.9 6.0 5.9 0.0 5.3 0.1 2.7 3.7 
116 6.1 5.9 6.0 0.1 6.0 5.9 6.0 0.1 6.0 5.9 6.0 0.1 5.2 0.1 2.6 3.7 

Notes: Dissolved oxygen represented as mg/l; N/A: Not available; Nutrients: 1,000 mg/l nitrate 
and 400 mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; Ext.C.: 
1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 2.5% 
(w/w) Tween 80 additions 
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Table D.3. (Continued) 

Day 

Condition 
Biotic control Nutrients Bio.+ Nutrients Bio.+Nutrients+Ext.C. 

1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 
128 6.4 6.5 6.4 0.1 6.3 5.4 5.8 0.7 6.5 6.5 6.5 0.0 0.0 0.1 0.1 0.0 
130 6.1 6.3 6.2 0.1 6.0 6.2 6.1 0.1 6.1 6.0 6.1 0.0 0.1 0.1 0.1 0.1 
133 6.1 6.1 6.1 0.0 6.3 6.2 6.2 0.1 6.2 6.2 6.2 0.0 5.1 0.1 2.6 3.5 
135 6.0 6.2 6.1 0.1 6.3 4.9 5.6 0.9 6.3 6.0 6.1 0.2 4.9 0.0 2.5 3.4 
137 6.1 5.9 6.0 0.1 6.1 4.3 5.2 1.3 5.9 5.8 5.9 0.1 4.9 0.0 2.5 3.5 
140 5.9 5.9 5.9 0.0 5.9 4.8 5.4 0.8 5.9 6.0 5.9 0.0 5.4 0.0 2.7 3.8 
142 5.4 5.7 5.5 0.2 5.7 4.5 5.1 0.8 5.7 5.6 5.6 0.1 4.6 0.0 2.3 3.2 
147 5.8 5.8 5.8 0.1 5.8 4.6 5.2 0.8 5.8 5.9 5.8 0.0 5.1 0.0 2.6 3.6 
149 5.4 5.3 5.3 0.0 5.2 4.3 4.7 0.7 5.2 5.3 5.2 0.1 4.9 0.0 2.5 3.5 
151 4.7 5.2 5.0 0.3 5.3 3.9 4.6 1.0 5.2 5.2 5.2 0.0 4.7 0.0 2.3 3.3 
154 4.7 5.1 4.9 0.3 5.2 3.9 4.6 0.9 5.1 5.1 5.1 0.0 4.6 0.0 2.3 3.2 
161 4.6 4.6 4.6 0.0 4.6 0.6 2.6 2.8 4.7 4.7 4.7 0.0 4.1 0.0 2.0 2.9 
165 6.2 6.2 6.2 0.0 5.5 0.8 3.2 3.4 5.8 5.8 5.8 0.0 5.3 0.0 2.7 3.7 

Notes: Dissolved oxygen represented as mg/l; N/A: Not available; Nutrients: 1,000 mg/l nitrate 
and 400 mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; Ext.C.: 
1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 2.5% 
(w/w) Tween 80 additions 



www.manaraa.com

262 

Table D.4. Oxygen Uptake Rate Results for Phase II: Bioslurry Experiments 

Day 

Condition 
Biotic control Nutrients Bio. + Nutrients Bio.+Nutrients+Ext.C 

. 
1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
4 4.9 4.6 4.7 0.2 6.1 5.6 5.9 0.4 4.2 4.1 4.2 0.0 0.5 0.5 0.5 0.0 
7 3.7 7.6 5.6 2.8 1.5 0.1 0.8 1.0 3.9 5.0 4.5 0.8 2.2 3.1 2.6 0.7 
9 1.3 1.4 1.4 0.0 2.3 1.1 1.7 0.8 2.5 2.3 2.4 0.1 3.0 2.9 3.0 0.0 
14 1.8 3.5 2.7 1.2 2.0 1.0 1.5 0.7 1.0 1.3 1.1 0.3 0.8 1.3 1.1 0.3 
18 1.4 3.6 2.5 1.6 1.3 1.2 1.3 0.1 0.5 1.6 1.0 0.7 2.3 2.6 2.4 0.2 
21 0.0 1.1 0.5 0.8 1.2 1.0 1.1 0.1 2.1 1.8 2.0 0.2 3.1 3.8 3.5 0.6 
25 0.0 0.1 0.1 0.1 0.8 0.3 0.6 0.4 0.4 0.4 0.4 0.0 2.0 2.2 2.1 0.2 
30 0.0 0.3 0.1 0.2 1.5 1.4 1.5 0.1 1.5 2.1 1.8 0.4 2.7 0.5 1.6 1.6 
32 0.0 0.0 0.0 0.0 4.0 3.1 3.5 0.6 1.0 0.1 0.5 0.6 0.3 0.5 0.4 0.1 
39 0.5 1.2 0.9 0.5 0.4 1.0 0.7 0.4 1.1 0.5 0.8 0.4 1.0 1.1 1.1 0.1 
42 0.0 0.7 0.3 0.5 0.3 0.8 0.5 0.3 0.5 1.0 0.8 0.3 1.2 0.2 0.7 0.7 
46 0.1 0.2 0.1 0.1 0.7 0.0 0.4 0.5 0.4 0.2 0.3 0.2 0.2 0.6 0.4 0.3 
49 0.8 0.4 0.6 0.3 0.6 0.3 0.5 0.2 0.1 0.0 0.0 0.0 0.7 1.1 0.9 0.3 
53 0.7 1.9 1.3 0.8 N/A N/A - - 2.6 2.2 2.4 0.3 1.7 2.2 2.0 0.3 
56 0.1 0.7 0.4 0.4 N/A N/A - - 1.1 1.0 1.1 0.1 0.7 0.4 0.5 0.3 
60 1.2 1.4 1.3 0.2 N/A N/A - - 1.0 0.8 0.9 0.1 1.2 0.2 0.7 0.7 
63 0.8 0.9 0.8 0.1 N/A N/A - - 0.6 1.3 1.0 0.5 0.8 1.4 1.1 0.4 
67 1.9 0.0 0.9 1.3 N/A N/A - - 0.2 0.3 0.3 0.0 1.8 1.0 1.4 0.6 
70 0.7 2.6 1.7 1.4 N/A N/A - - 0.9 0.8 0.8 0.1 1.0 1.1 1.1 0.1 
74 0.9 0.54 0.7 0.3 N/A N/A - - 1.14 0.6 0.9 0.4 1.02 0.78 0.9 0.2 
77 1.26 0.48 0.9 0.6 N/A N/A - - 0.84 0.9 0.9 0.0 0.3 0 0.2 0.2 
81 1.14 0.78 1.0 0.3 2.76 2.52 2.6 0.2 1.2 0.96 1.1 0.2 3.6 0.3 2.0 2.3 
84 0.36 1.14 0.7 0.6 2.46 2.58 2.5 0.1 0.84 0.96 0.9 0.1 6.24 0.24 3.0 4.6 
86 0.06 1.56 0.8 1.1 1.44 1.14 1.3 0.2 0.66 1.2 0.9 0.4 0.84 0.12 0.5 0.5 

Notes: Oxygen uptake rate represented as mg/l-hr; N/A: Not available; Nutrients: 1,000 mg/l 
nitrate and 400 mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; 
Ext.C.: 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 
2.5% (w/w) Tween 80 additions 
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Table D.4. (Continued) 

Day 

Condition 
Biotic control Nutrients Bio.+ Nutrients Bio.+Nutrients+Ext. 

C. 
1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 

89 0.66 1.02 0.8 0.3 1.02 1.38 1.2 0.3 0.48 0.9 0.7 0.3 6.42 0 3.2 4.5 
93 0.6 0.96 0.8 0.3 1.86 2.76 2.3 0.6 0.42 1.2 0.8 0.6 3.96 0 2.0 2.8 
96 1.02 1.02 1.0 0.0 2.16 1.84 2.0 0.2 0.72 0.96 0.8 0.2 5.7 0 2.9 4.0 
100 1.14 1.26 1.2 0.1 0.54 1.2 0.9 0.5 0.42 0.66 0.5 0.2 7.44 0 3.7 5.3 
107 0.06 0.6 0.3 0.4 0.48 0.66 0.6 0.1 0 0.96 0.5 0.7 4.14 0 2.1 2.9 
110 0.24 0.12 0.2 0.1 0.36 0.66 0.5 0.2 0.48 0.3 0.4 0.1 8.46 0 4.2 6.0 
114 1.2 0.54 0.9 0.5 0 0 0.0 0.0 1.26 0.6 0.9 0.5 3 0 1.5 2.1 
121 0.84 0.72 0.8 0.1 0 0 0.0 0.0 0.42 1.2 0.8 0.6 2.7 0.42 1.6 1.6 
124 0.84 0.78 0.8 0.0 0 0 0.0 0.0 0.72 0.96 0.8 0.2 3.18 0.36 1.8 2.0 
128 0 0.42 0.2 0.3 1.26 1.14 1.2 0.1 0.6 0.96 0.8 0.3 0.36 0.06 0.2 0.2 
131 0.66 0.3 0.5 0.3 1.14 0.72 0.9 0.3 0.18 0.54 0.4 0.3 3.6 0 1.8 2.5 
135 0.6 0 0.3 0.4 0.72 0 0.4 0.5 0.3 0 0.1 0.2 2.82 0 1.4 2.0 
145 0.12 0.9 0.5 0.6 0.84 0 0.4 0.6 0.48 0.9 0.7 0.3 2.82 0 1.4 2.0 
149 0.12 0.54 0.3 0.3 0.6 0 0.3 0.4 1.14 1.2 1.2 0.0 3 0 1.5 2.1 
159 0 0 0.0 0.0 0 0 0.0 0.0 0 0.18 0.1 0.1 2.28 0 1.1 1.6 
163 1.44 0.78 1.1 0.5 1.08 0 0.5 0.8 0 0.72 0.4 0.5 2.28 0.12 1.2 1.5 

Notes: Oxygen uptake rate represented as mg/l-hr; N/A: Not available; Nutrients: 1,000 mg/l 
nitrate and 400 mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; 
Ext.C.: 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 
2.5% (w/w) Tween 80 additions 
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Table D.5. Total Organic Carbon Results for Phase II: Bioslurry Experiments 

Condition Biotic control Nutrients 
Day 1 2 Average Stdev 1 2 Average Stdev 
0 103349 89905 96627 9506 103349 89905 96627 9506 
7 31833 33577 32705 1233 23102 34579 28840 8116 
14 33208 34642 33925 1014 -1991 31123 14565 23416 
21 27272 31071 29172 2689 31268 31317 31292 35 
35 33421 30419 31920 2123 27076 31757 29414 3313 
49 31471 34002 32737 1790 33306 34923 34114 1143 
63 29055 29845 29450 559 N/A N/A - -

Bio.+Nutrients Bio.+Nutrients+Ext.C. 
Day 1 2 Average Stdev 1 2 Average Stdev 
0 103349 89905 96627 9506 103349 89905 96627 9506 
7 24976 33190 29083 5808 26004 31087 28545 3594 
14 21559 34454 28006 9118 29673 35009 32341 3773 
21 20875 30982 25928 7146 31430 -1775 14828 23480 
35 32574 31656 32115 650 26111 27844 26978 1225 
49 34385 34639 34512 180 28972 29216 29094 173 
63 30154 29346 29750 571 25804 27566 26685 1246 
69 32657 36551 34604 2754 33830 35835 34833 1418 
69 32152 30286 31219 1319 N/A N/A - -

Notes: Total organic carbon represented as mg/kg; N/A: Not available; Nutrients: 1,000 mg/l 
nitrate and 400 mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; 
Ext.C.: 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 
2.5% (w/w) Tween 80 additions 
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Table D.6. Bioreactor Headspace Oxygen Results for Phase II: Bioslurry Experiments 

Day Biotic control Nutrients 
1 2 Ave Stdev 1 2 Ave Stdev 

0 20.9 20.9 20.9 0.0 20.9 20.9 20.9 0.0 
14 20.9 20.9 20.9 0.0 20.9 20.9 20.9 0.0 
21 20.7 20.7 20.7 0.0 20.7 20.7 20.7 0.0 
28 20.9 20.9 20.9 0.0 20.9 20.9 20.9 0.0 
35 20.9 20.9 20.9 0.0 20.9 20.9 20.9 0.0 
42 20.8 20.7 20.8 0.1 20.8 20.9 20.9 0.1 
49 20.4 20.6 20.5 0.1 20.7 20.7 20.7 0.0 
59 20.9 20.9 20.9 0.0 N/A N/A - -
77 20.8 20.7 20.8 0.1 N/A N/A - -
84 20.9 20.9 20.9 0.0 20.9 20.9 20.9 0.0 
Day Bio.+Nutrients Bio.+Nutrients+Ext.C. 

1 2 Ave Stdev 1 2 Ave Stdev 
0 20.9 20.9 20.9 0.0 20.9 20.9 20.9 0.0 
14 20.9 20.9 20.9 0.0 20.8 20.9 20.9 0.1 
21 20.7 20.6 20.7 0.1 20.7 20.8 20.8 0.1 
28 20.8 20.9 20.9 0.1 20.9 20.9 20.9 0.0 
35 20.9 20.9 20.9 0.0 20.9 20.9 20.9 0.0 
42 20.9 20.9 20.9 0.0 20.9 20.9 20.9 0.0 
49 20.8 20.7 20.8 0.1 20.5 20.5 20.5 0.0 
59 20.9 20.9 20.9 0.0 20.9 20.9 20.9 0.0 
77 20.9 20.9 20.9 0.0 15.9 15.0 15.5 0.6 
84 20.9 20.9 20.9 0.0 20.6 19.3 20.0 0.9 

Notes: Oxygen content represented as %; N/A: Not available; Nutrients: 1,000 mg/l nitrate and 
400 mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; Ext.C.: 
1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 2.5% 
(w/w) Tween 80 additions 
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Table D.7. Bioreactor Headspace Carbon Dioxide Results for Phase II: Bioslurry 
Experiments 

Day Biotic control Nutrients Bio.+Nutrients Bio.+Nutrients+Ext.C. 
1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 1 2 Ave Stdev 

0 0.2 0.3 0.3 0.1 0.1 0.1 0.1 0 0.2 0.2 0.2 0 0 0 0.0 0.0 
7 0.2 0.2 0.2 0.0 0.2 0.2 0.2 0 0.2 0.2 0.2 0 0.2 0.2 0.2 0.0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 
49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 
59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 
77 0 0 0 0 N/A N/A - - 0 0 0 0 3.5 4.1 3.8 0.4 
84 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0.3 0.4 

Notes: Carbon dioxide content represented as %; N/A: Not available; Nutrients: 1,000 mg/l 
nitrate and 400 mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; 
Ext.C.: 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 
2.5% (w/w) Tween 80 additions 
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Table D.8. Bioreactor Headspace Volatile Organic Carbons Results for Phase II: Bioslurry 
Experiments 

Day Biotic control Nutrients 
1 2 Ave Stdev 1 2 Ave Stdev 

0 300 400 350.0 70.7 300 360 330.0 42.4 
7 480 740 610.0 183.8 1020 1000 1010.0 14.1 
14 1540 1620 1580.0 56.6 1560 1600 1580.0 28.3 
21 2460 2640 2550.0 127.3 2660 2660 2660.0 0.0 
28 480 200 340.0 198.0 0 260 130.0 183.8 
35 860 540 700.0 226.3 460 400 430.0 42.4 
42 1500 1420 1460.0 56.6 1120 1140 1130.0 14.1 
49 1720 1320 1520.0 282.8 1300 1520 1410.0 155.6 
59 0 60 30.0 42.4 N/A N/A - -
77 760 900 830.0 99.0 N/A N/A - -
84 840 200 520.0 452.5 0 0 0 0 
Day Bio.+Nutrients Bio.+Nutrients+Ext.C. 

0 1 2 Ave Stdev 1 2 Ave Stdev 
7 320 400 360.0 56.6 360 300 330.0 42.4 
14 980 1100 1040.0 84.9 820 1720 1270.0 636.4 
21 1540 1520 1530.0 14.1 1520 1460 1490.0 42.4 
28 2880 2820 2850.0 42.4 3200 3260 3230.0 42.4 
35 840 640 740.0 141.4 540 460 500.0 56.6 
42 100 160 130.0 42.4 180 160 170.0 14.1 
49 1040 1080 1060.0 28.3 960 1140 1050.0 127.3 
59 1740 1720 1730.0 14.1 1440 1400 1420.0 28.3 
77 20 0 10.0 14.1 40 680 360.0 452.5 
84 1020 1000 1010.0 14.1 1060 1300 1180.0 169.7 

Notes: Volatile organic carbon content represented as %; N/A: Not available; Nutrients: 1,000 
mg/l nitrate and 400 mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene 
degraders; Ext.C.: 1,000 mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, 
and 5% and 2.5% (w/w) Tween 80 additions 
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Table D.13. PAH Results for Phase II: Bioslurry Experiments 

Condition Day PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Biotic 
control 

0 Replica 1 158.47 137.81 296.28 132.86 64.72 28.15 225.72 522.01 
2 189.00 167.38 356.38 157.70 75.48 30.18 263.36 619.74 

Average 173.74 152.60 326.33 145.28 70.10 29.17 244.54 570.87 
Stdev 21.59 20.90 42.50 17.57 7.61 1.44 26.61 69.11 

7 Replica 1 136.33 92.02 228.35 109.80 67.08 27.93 204.81 433.15 
2 168.62 94.56 263.18 114.00 79.42 30.57 223.99 487.17 

Average 152.48 93.29 245.76 111.90 73.25 29.25 214.40 460.16 
Stdev 22.84 1.80 24.63 2.97 8.73 1.87 13.56 38.19 

14 Replica 1 110.93 70.26 181.18 78.17 50.14 21.54 149.85 331.04 
2 146.14 96.69 242.83 114.41 72.96 29.88 217.25 460.08 

Average 128.53 83.47 212.01 96.29 61.55 25.71 183.55 395.56 
Stdev 24.90 18.69 43.59 25.62 16.14 5.90 47.66 91.25 

21 Replica 1 123.18 82.19 205.37 95.17 60.18 23.60 178.95 384.32 
2 122.48 84.68 207.16 101.99 66.90 23.98 192.87 400.03 

Average 122.83 83.44 206.27 98.58 63.54 23.79 185.91 392.18 
Stdev 0.50 1.76 1.26 4.83 4.75 0.26 9.84 11.10 

28 Replica 1 132.70 143.71 276.41 175.64 99.94 36.26 311.84 588.24 
2 126.68 86.18 212.86 115.99 88.90 32.39 237.27 450.13 

Average 129.69 114.94 244.63 145.81 94.42 34.32 274.55 519.19 
Stdev 4.25 40.68 44.93 42.18 7.81 2.73 52.72 97.66 

35 Replica 1 82.56 51.12 133.68 57.07 22.27 18.22 97.57 231.25 
2 94.81 60.55 155.36 71.79 38.74 21.05 131.57 286.93 

Average 88.69 55.83 144.52 64.43 30.51 19.63 114.57 259.09 
Stdev 8.66 6.67 15.33 10.40 11.64 2.00 24.04 39.37 

42 Replica 1 110.53 73.13 183.66 88.34 47.59 25.86 161.79 345.46 
2 91.39 63.57 154.96 77.59 41.20 23.25 142.04 297.01 

Average 100.96 68.35 169.31 82.97 44.40 24.56 151.92 321.23 
Stdev 13.54 6.76 20.29 7.60 4.52 1.85 13.97 34.26 

Notes: 
- PAH represented as mg/kg 
- N/A: Not available 
- Naphthalene is a 2-ring PAH 
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Table D.13. (Continued) 

Condition Day PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Biotic 
Control 

49 Replica 1 121.27 82.20 203.47 103.75 59.74 28.05 191.54 395.00 
2 114.64 76.73 191.37 97.47 62.89 25.83 186.19 377.56 

Average 117.95 79.46 197.42 100.61 61.32 26.94 188.87 386.28 
Stdev 4.69 3.86 8.55 4.44 2.23 1.57 3.78 12.33 

56 Replica 1 90.99 58.53 149.52 77.37 51.73 20.12 149.22 298.73 
2 86.10 56.15 142.25 69.04 42.54 20.22 131.80 274.06 

Average 88.55 57.34 145.89 73.21 47.13 20.17 140.51 286.40 
Stdev 3.46 1.68 5.14 5.89 6.50 0.07 12.31 17.45 

63 Replica 1 118.68 76.73 195.41 92.67 46.59 28.68 167.95 363.36 
2 114.71 74.06 188.77 89.98 49.56 27.16 166.70 355.47 

Average 116.70 75.39 192.09 91.33 48.08 27.92 167.33 359.42 
Stdev 2.81 1.89 4.69 1.90 2.10 1.08 0.88 5.57 

70 Replica 1 80.37 51.75 132.12 65.20 30.93 13.33 109.45 241.57 
2 91.70 63.76 155.46 81.69 38.31 23.12 143.13 298.59 

Average 86.03 57.75 143.79 73.44 34.62 18.22 126.29 270.08 
Stdev 8.01 8.49 16.51 11.67 5.23 6.92 23.81 40.32 

77 Replica 1 97.28 66.14 163.43 83.12 51.25 24.55 158.92 322.34 
2 79.65 53.30 132.96 66.36 27.01 20.50 113.87 246.82 

Average 88.47 59.72 148.19 74.74 39.13 22.53 136.39 284.58 
Stdev 12.47 9.08 21.54 11.85 17.14 2.87 31.86 53.40 

84 Replica 1 52.35 40.54 92.89 51.57 27.40 15.75 94.71 187.60 
2 127.01 81.43 208.44 106.74 73.17 31.64 211.54 419.98 

Average 89.68 60.98 150.66 79.15 50.28 23.69 153.13 303.79 
Stdev 52.79 28.91 81.70 39.01 32.36 11.24 82.61 164.32 

91 Replica 1 75.86 51.91 127.77 67.33 44.10 19.50 130.92 258.69 
2 123.07 76.55 199.62 97.80 65.23 28.49 191.52 391.13 

Average 99.46 64.23 163.69 82.57 54.66 23.99 161.22 324.91 
Stdev 33.38 17.43 50.80 21.55 14.94 6.36 42.85 93.65 

Notes: 
- PAH represented as mg/kg 
- N/A: Not available 
- Naphthalene is a 2-ring PAH 
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Table D.13. (Continued) 

Condition Day PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Biotic 
Control 

98 Replica 1 115.53 46.42 161.95 74.02 13.16 0.00 87.18 249.13 
2 81.03 38.17 119.20 52.12 0.00 0.00 52.12 171.32 

Average 98.28 42.30 140.57 63.07 6.58 0.00 69.65 210.23 
Stdev 24.40 5.83 30.23 15.48 9.31 0.00 24.79 55.02 

105 Replica 1 145.21 89.36 234.58 114.77 76.26 33.51 224.54 459.12 
2 91.83 71.17 163.00 90.68 40.50 24.62 155.79 318.80 

Average 118.52 80.27 198.79 102.72 58.38 29.06 190.16 388.96 
Stdev 37.75 12.86 50.61 17.04 25.29 6.29 48.61 99.22 

127 Replica 1 54.86 59.28 114.14 80.25 37.88 13.41 131.54 245.68 
2 143.75 88.74 232.48 126.93 66.66 32.22 225.81 458.30 

Average 99.30 74.01 173.31 103.59 52.27 22.82 178.67 351.99 
Stdev 62.85 20.83 83.68 33.01 20.35 13.30 66.67 150.34 

144 Replica 1 132.17 78.44 210.61 97.38 64.60 31.38 193.36 403.96 
2 109.29 69.67 178.97 92.52 45.75 28.85 167.12 346.09 

Average 120.73 74.06 194.79 94.95 55.18 30.12 180.24 375.03 
Stdev 16.18 6.20 22.37 3.44 13.33 1.78 18.55 40.92 

Nutrients 

0 Replica 1 184.00 149.61 333.60 138.77 71.11 30.22 240.11 573.71 
2 134.44 111.42 245.86 107.68 51.97 22.47 182.11 427.97 

Average 159.22 130.51 289.73 123.23 61.54 26.34 211.11 500.84 
Stdev 35.04 27.01 62.04 21.99 13.54 5.48 41.01 103.05 

7 Replica 1 136.27 93.39 229.66 112.12 67.65 27.23 207.00 436.66 
2 144.24 95.71 239.95 119.11 78.51 26.75 224.37 464.32 

Average 140.26 94.55 234.80 115.61 73.08 26.99 215.69 450.49 
Stdev 5.64 1.64 7.28 4.94 7.68 0.34 12.28 19.56 

14 Replica 1 122.84 79.38 202.22 91.46 49.07 24.00 164.53 366.75 
2 134.04 85.69 219.73 95.58 62.76 25.22 183.56 403.28 

Average 128.44 82.54 210.97 93.52 55.91 24.61 174.04 385.02 
Stdev 7.92 4.46 12.38 2.91 9.68 0.86 13.45 25.83 

Notes: 
- PAH represented as mg/kg 
- N/A: Not available 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- Naphthalene is a 2-ring PAH 
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Table D.13. (Continued) 

Condition Day PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Nutrients 

21 Replica 1 123.96 68.63 192.59 81.03 53.48 22.07 156.58 349.17 
2 109.68 68.77 178.45 80.56 54.06 19.99 154.61 333.06 

Average 116.82 68.70 185.52 80.80 53.77 21.03 155.60 341.12 
Stdev 10.10 0.10 10.00 0.33 0.41 1.47 1.39 11.39 

28 Replica 1 118.29 75.57 193.85 86.35 57.10 25.48 168.93 362.79 
2 122.31 81.03 203.34 97.69 64.59 27.85 190.14 393.48 

Average 120.30 78.30 198.60 92.02 60.85 26.67 179.53 378.13 
Stdev 2.85 3.86 6.71 8.02 5.29 1.68 14.99 21.70 

35 Replica 1 131.81 82.43 214.24 96.06 62.75 27.55 186.36 400.59 
2 95.86 63.37 159.23 76.83 40.80 21.38 139.01 298.24 

Average 113.83 72.90 186.73 86.45 51.77 24.46 162.68 349.42 
Stdev 25.42 13.48 38.89 13.60 15.52 4.36 33.48 72.37 

42 Replica 1 110.96 72.02 182.97 92.49 64.03 24.69 181.21 364.19 
2 84.67 63.59 148.26 77.46 34.70 22.11 134.27 282.53 

Average 97.81 67.80 165.62 84.98 49.37 23.40 157.74 323.36 
Stdev 18.59 5.96 24.55 10.63 20.74 1.83 33.19 57.74 

49 Replica 1 102.29 69.80 172.09 83.81 44.10 24.48 152.39 324.48 
2 144.19 98.46 242.65 122.49 82.57 30.06 235.11 477.77 

Average 123.24 84.13 207.37 103.15 63.33 27.27 193.75 401.12 
Stdev 29.63 20.27 49.90 27.35 27.20 3.94 58.49 108.39 

56 Replica 1 N/A N/A N/A N/A N/A N/A N/A N/A 
2 N/A N/A N/A N/A N/A N/A N/A N/A 

Average - - - - - - - -
Stdev - - - - - - - -

63 Replica 1 N/A N/A N/A N/A N/A N/A N/A N/A 
2 N/A N/A N/A N/A N/A N/A N/A N/A 

Average - - - - - - - -
Stdev - - - - - - - -

Notes: 
- PAH represented as mg/kg 
- N/A: Not available 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- Naphthalene is a 2-ring PAH 
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Table D.13. (Continued) 

Condition Day PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total
 PAHs 

Nutrients 

70 Replica 1 N/A N/A N/A N/A N/A N/A N/A N/A 
2 N/A N/A N/A N/A N/A N/A N/A N/A 

Average - - - - - - - -
Stdev - - - - - - - -

77 Replica 1 N/A N/A N/A N/A N/A N/A N/A N/A 
2 N/A N/A N/A N/A N/A N/A N/A N/A 

Average - - - - - - - -
Stdev - - - - - - - -

84 Replica 1 47.80 34.70 82.50 41.03 12.89 0.00 53.92 136.42 
2 125.35 76.76 202.11 93.18 48.33 28.88 170.40 372.51 

Average 86.58 55.73 142.31 67.10 30.61 14.44 112.16 254.47 
Stdev 54.84 29.74 84.58 36.88 25.06 20.42 82.37 166.94 

91 Replica 1 54.19 33.86 88.05 39.21 15.86 3.36 58.43 146.48 
2 141.83 80.61 222.44 97.07 50.64 29.36 177.07 399.51 

Average 98.01 57.24 155.24 68.14 33.25 16.36 117.75 272.99 
Stdev 61.97 33.05 95.02 40.92 24.59 18.38 83.89 178.92 

98 Replica 1 80.27 46.26 126.54 43.32 27.59 7.98 78.88 205.42 
2 85.83 48.25 134.08 58.40 35.23 7.79 101.43 235.50 

Average 83.05 47.26 130.31 50.86 31.41 7.89 90.15 220.46 
Stdev 3.93 1.41 5.33 10.67 5.40 0.13 15.94 21.27 

105 Replica 1 71.30 42.38 113.68 49.97 17.32 0.00 67.29 180.97 
2 86.95 66.97 153.92 79.69 19.92 0.00 99.61 253.53 

Average 79.12 54.68 133.80 64.83 18.62 0.00 83.45 217.25 
Stdev 11.07 17.39 28.45 21.02 1.84 0.00 22.85 51.31 

127 Replica 1 47.68 59.86 107.54 76.39 18.56 7.16 102.10 209.64 
2 150.49 84.57 235.06 97.75 29.91 0.00 127.65 362.71 

Average 99.09 72.21 171.30 87.07 24.23 3.58 114.88 286.18 
Stdev 72.70 17.47 90.17 15.10 8.03 5.06 18.07 108.24 

Notes: 
- PAH represented as mg/kg 
- N/A: Not available 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- Naphthalene is a 2-ring PAH 
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Table D.13. (Continued) 

Condition Day PAH 
Category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Nutrients 
144 Replica 1 114.62 74.69 189.31 91.93 46.77 15.36 154.06 343.36 

2 150.79 92.14 242.93 115.85 51.76 19.97 187.59 430.52 
Average 132.70 83.41 216.12 103.89 49.27 17.67 170.82 386.94 

Stdev 25.58 12.34 37.92 16.92 3.53 3.26 23.71 61.63 

Bio.+ 
Nutrients 

0 Replica 1 154.61 136.69 291.30 136.56 70.18 28.27 235.00 526.31 
2 232.47 161.13 393.60 144.81 70.91 30.28 246.00 639.60 

Average 193.54 148.91 342.45 140.69 70.54 29.28 240.50 582.95 
Stdev 55.06 17.28 72.33 5.84 0.52 1.42 7.77 80.11 

7 Replica 1 127.46 93.11 220.56 112.49 66.59 27.26 206.34 426.91 
2 185.74 150.36 336.10 183.41 113.15 38.35 334.90 671.00 

Average 156.60 121.74 278.33 147.95 89.87 32.80 270.62 548.95 
Stdev 41.21 40.49 81.70 50.15 32.92 7.84 90.91 172.60 

14 Replica 1 108.76 79.98 188.75 88.21 47.42 23.77 159.41 348.15 
2 130.69 85.46 216.15 100.81 63.30 25.35 189.46 405.61 

Average 119.73 82.72 202.45 94.51 55.36 24.56 174.43 376.88 
Stdev 15.50 3.87 19.38 8.91 11.23 1.12 21.25 40.63 

21 Replica 1 70.20 137.97 208.17 137.04 69.04 22.76 228.84 437.02 
2 154.48 102.39 256.87 125.76 80.33 26.68 232.77 489.64 

Average 112.34 120.18 232.52 131.40 74.69 24.72 230.81 463.33 
Stdev 59.60 25.16 34.43 7.98 7.98 2.77 2.78 37.21 

28 Replica 1 132.82 82.33 215.16 98.15 63.19 25.83 187.17 402.33 
2 104.05 67.55 171.60 79.22 60.46 22.31 161.99 333.59 

Average 118.44 74.94 193.38 88.69 61.82 24.07 174.58 367.96 
Stdev 20.35 10.45 30.80 13.39 1.93 2.49 17.81 48.61 

Notes: 
- Bio.: Bioaugmentation with naphthalene degraders 
- PAH represented as mg/kg 
- N/A: Not available 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- Naphthalene is a 2-ring PAH 
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Table D.13. (Continued) 

Condition Day PAH 
category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Bio.+ 
Nutrients 

35 Replica 1 105.43 120.94 226.37 140.71 75.99 31.01 247.70 474.07 
2 119.94 78.17 198.11 95.55 52.30 25.87 173.72 371.83 

Average 112.68 99.56 212.24 118.13 64.15 28.44 210.71 422.95 
Stdev 10.26 30.24 19.98 31.93 16.75 3.63 52.31 72.29 

49 Replica 1 125.09 79.74 204.82 101.81 68.08 28.69 198.58 403.41 
2 104.73 68.11 172.85 86.40 62.09 21.92 170.41 343.25 

Average 114.91 73.93 188.83 94.11 65.09 25.30 184.50 373.33 
Stdev 14.39 8.22 22.61 10.90 4.24 4.79 19.92 42.54 

56 Replica 1 113.49 70.72 184.20 89.09 65.55 25.20 179.85 364.05 
2 62.91 65.48 128.40 82.87 44.20 20.99 148.05 276.45 

Average 88.20 68.10 156.30 85.98 54.87 23.09 163.95 320.25 
Stdev 35.76 3.70 39.46 4.40 15.10 2.98 22.48 61.94 

63 Replica 1 69.61 55.57 125.18 65.89 25.88 11.05 102.81 227.99 
2 88.38 64.84 153.22 84.79 53.18 22.70 160.66 313.88 

Average 79.00 60.20 139.20 75.34 39.53 16.87 131.74 270.94 
Stdev 13.27 6.56 19.83 13.36 19.31 8.23 40.90 60.73 

70 Replica 1 98.10 88.19 186.29 84.90 50.80 24.01 159.72 346.01 
2 82.96 61.00 143.96 76.02 40.58 22.59 139.19 283.15 

Average 90.53 74.59 165.12 80.46 45.69 23.30 149.46 314.58 
Stdev 10.70 19.22 29.93 6.28 7.23 1.00 14.51 44.44 

77 Replica 1 78.28 54.53 132.81 67.79 29.24 21.29 118.32 251.12 
2 77.66 51.17 128.83 63.07 26.16 19.49 108.71 237.55 

Average 77.97 52.85 130.82 65.43 27.70 20.39 113.52 244.34 
Stdev 0.44 2.37 2.81 3.34 2.18 1.28 6.79 9.60 

84 Replica 1 62.33 42.74 105.07 54.75 30.71 16.76 102.22 207.30 
2 105.60 71.42 177.02 89.70 60.72 26.83 177.25 354.27 

Average 83.97 57.08 141.05 72.23 45.72 21.79 139.73 280.78 
Stdev 30.59 20.28 50.88 24.71 21.22 7.12 53.05 103.93 

Notes: PAH represented as mg/kg; N/A: Not available; Nutrients: 1,000 mg/l nitrate and 400 
mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; Naphthalene is a 
2-ring PAH 
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Table D.13. (Continued) 

Condition Day PAH 
Category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Bio+ 
Nutrients 

91 Replica 1 72.23 46.20 118.42 56.40 38.50 17.24 112.14 230.56 
2 124.59 76.07 200.66 96.94 54.71 28.70 180.35 381.01 

Average 98.41 61.13 159.54 76.67 46.61 22.97 146.24 305.79 
Stdev 37.03 21.12 58.15 28.67 11.46 8.11 48.23 106.38 

98 Replica 1 104.79 66.88 171.67 87.05 36.07 22.75 145.87 317.54 
2 80.29 49.60 129.89 63.57 42.01 18.27 123.85 253.74 

Average 92.54 58.24 150.78 75.31 39.04 20.51 134.86 285.64 
Stdev 17.33 12.21 29.54 16.60 4.20 3.17 15.57 45.11 

105 Replica 1 95.66 59.76 155.42 75.30 30.76 22.13 128.19 283.61 
2 96.90 161.30 258.19 178.40 69.30 33.88 281.58 539.77 

Average 96.28 110.53 206.81 126.85 50.03 28.01 204.89 411.69 
Stdev 0.88 71.79 72.67 72.90 27.25 8.31 108.46 181.13 

127 Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

144 Replica 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Stdev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 

Bio.+ 
Nutrients + 

Ext. C. 

0 Replica 1 177.57 148.50 326.07 139.42 68.67 30.79 238.88 564.95 
2 224.75 184.72 409.47 173.82 85.98 35.87 295.67 705.14 

Average 201.16 166.61 367.77 156.62 77.33 33.33 267.28 635.05 
Stdev 33.36 25.61 58.97 24.33 12.24 3.59 40.15 99.13 

7 Replica 1 141.62 91.21 232.82 109.04 66.62 26.90 202.55 435.37 
2 180.90 138.68 319.58 163.64 100.11 34.21 297.97 617.56 

Average 161.26 114.95 276.20 136.34 83.36 30.56 250.26 526.46 
Stdev 27.78 33.57 61.35 38.61 23.69 5.17 67.47 128.82 

Notes: PAH represented as mg/kg; N/A: Not available; Nutrients: 1,000 mg/l nitrate and 400 
mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; Ext.C.: 1,000 
mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 2.5% (w/w) 
Tween 80 additions; Naphthalene is a 2-ring PAH 
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Table D.13. (Continued) 

Condition Day PAH 
Category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Bio.+ 
Nutrients + 

Ext.C. 

14 Replica 1 108.79 71.80 180.59 78.13 30.09 23.68 131.89 312.48 
2 138.54 90.95 229.49 102.41 64.48 26.07 192.96 422.45 

Average 123.66 81.38 205.04 90.27 47.28 24.87 162.43 367.46 
Stdev 21.04 13.54 34.58 17.16 24.32 1.69 43.18 77.76 

21 Replica 1 70.01 93.77 163.78 116.55 71.26 25.25 213.05 376.83 
2 139.82 101.30 241.13 124.59 78.69 25.76 229.04 470.17 

Average 104.92 97.54 202.45 120.57 74.97 25.50 221.05 423.50 
Stdev 49.37 5.33 54.69 5.69 5.25 0.36 11.31 66.00 

28 Replica 1 107.55 69.97 177.52 88.38 56.23 22.45 167.06 344.58 
2 130.56 90.09 220.65 105.17 71.16 30.10 206.42 427.06 

Average 119.05 80.03 199.08 96.77 63.69 26.27 186.74 385.82 
Stdev 16.27 14.23 30.49 11.87 10.56 5.41 27.83 58.32 

35 Replica 1 99.00 67.33 166.33 82.81 57.15 24.14 164.09 330.42 
2 87.58 55.31 142.88 66.00 26.06 20.06 112.13 255.01 

Average 93.29 61.32 154.61 74.41 41.60 22.10 138.11 292.71 
Stdev 8.08 8.50 16.58 11.88 21.98 2.88 36.74 53.32 

42 Replica 1 115.26 74.93 190.19 86.34 54.46 24.99 165.79 355.97 
2 85.88 58.44 144.32 68.45 28.98 16.51 113.95 258.27 

Average 100.57 66.68 167.25 77.40 41.72 20.75 139.87 307.12 
Stdev 20.77 11.66 32.43 12.65 18.02 5.99 36.65 69.08 

49 Replica 1 125.08 78.23 203.32 94.44 59.32 27.49 181.25 384.56 
2 130.43 111.54 241.97 131.93 82.69 29.56 244.18 486.15 

Average 127.76 94.88 222.64 113.19 71.00 28.53 212.71 435.36 
Stdev 3.78 23.55 27.33 26.50 16.53 1.47 44.50 71.83 

56 Replica 1 87.76 69.33 157.09 80.16 41.71 21.68 143.55 300.63 
2 71.22 67.08 138.30 84.63 51.16 23.41 159.20 297.50 

Average 79.49 68.20 147.69 82.39 46.44 22.54 151.37 299.07 
Stdev 11.69 1.59 13.28 3.17 6.68 1.22 11.06 2.22 

Notes: - PAH represented as mg/kg; N/A: Not available; Nutrients: 1,000 mg/l nitrate and 400 
mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; Ext.C.: 1,000 
mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 2.5% (w/w) 
Tween 80 additions; Naphthalene is a 2-ring PAH 
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Table D.13. (Continued) 

Condition Day PAH 
Category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Bio+ 
Nutrients+ 

Ext.C. 

63 Replica 1 77.18 52.92 130.10 64.00 26.54 11.44 101.98 232.08 
2 93.72 59.92 153.63 72.93 41.44 22.61 136.97 290.61 

Average 85.45 56.42 141.87 68.47 33.99 17.02 119.48 261.34 
Stdev 11.70 4.94 16.64 6.31 10.53 7.90 24.74 41.38 

70 Replica 1 61.32 39.83 101.15 45.61 18.97 10.90 75.48 176.63 
2 105.55 70.37 175.92 86.89 41.08 26.60 154.57 330.49 

Average 83.43 55.10 138.53 66.25 30.03 18.75 115.03 253.56 
Stdev 31.28 21.59 52.87 29.19 15.64 11.10 55.93 108.80 

77 Replica 1 109.17 72.10 181.27 88.80 44.89 26.78 160.47 341.74 
2 97.87 64.42 162.29 80.33 38.83 24.36 143.52 305.80 

Average 103.52 68.26 171.78 84.57 41.86 25.57 152.00 323.77 
Stdev 7.99 5.43 13.42 5.99 4.29 1.71 11.99 25.41 

84 Replica 1 40.58 27.74 68.32 34.47 12.21 6.30 52.98 121.30 
2 102.59 68.40 170.99 86.84 39.20 28.26 154.30 325.28 

Average 71.58 48.07 119.65 60.65 25.71 17.28 103.64 223.29 
Stdev 43.85 28.75 72.60 37.03 19.08 15.53 71.64 144.24 

91 Replica 1 45.11 32.33 77.44 37.87 14.46 7.30 59.63 137.07 
2 89.34 59.33 148.67 74.52 32.55 24.73 131.81 280.48 

Average 67.22 45.83 113.05 56.20 23.50 16.02 95.72 208.77 
Stdev 31.28 19.09 50.37 25.92 12.79 12.32 51.03 101.40 

98 Replica 1 49.36 53.11 102.47 62.58 36.61 15.08 114.27 216.74 
2 45.36 29.52 74.88 38.22 16.01 12.17 66.40 141.28 

Average 47.36 41.31 88.68 50.40 26.31 13.62 90.33 179.01 
Stdev 2.83 16.68 19.51 17.23 14.57 2.06 33.85 53.36 

105 Replica 1 53.43 35.05 88.48 43.78 24.08 8.75 76.61 165.09 
2 87.65 59.66 147.31 75.13 39.62 7.39 122.15 269.46 

Average 70.54 47.35 117.90 59.46 31.85 8.07 99.38 217.28 
Stdev 24.20 17.40 41.60 22.17 10.99 0.96 32.20 73.80 

Notes: PAH represented as mg/kg; N/A: Not available; Nutrients: 1,000 mg/l nitrate and 400 
mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; Ext.C.: 1,000 
mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 2.5% (w/w) 
Tween 80 additions; Naphthalene is a 2-ring PAH 
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Table D.13. (Continued) 

Condition Day PAH 
Category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Bio+ 
Nutrients+ 

Ext.C. 

127 Replica 1 82.22 51.09 133.31 64.92 23.58 12.88 101.38 234.68 
2 115.15 72.06 187.21 93.80 47.25 31.94 172.99 360.21 

Average 98.69 61.58 160.26 79.36 35.41 22.41 137.18 297.45 
Stdev 23.29 14.83 38.12 20.42 16.74 13.48 50.64 88.76 

144 Replica 1 139.55 97.32 236.87 131.07 69.91 37.95 238.92 475.79 
2 149.03 95.02 244.06 126.25 77.91 43.44 247.60 491.65 

Average 144.29 96.17 240.46 128.66 73.91 40.69 243.26 483.72 
Stdev 6.70 1.62 5.08 3.41 5.66 3.89 6.14 11.22 

Notes: PAH represented as mg/kg; N/A: Not available; Nutrients: 1,000 mg/l nitrate and 400 
mg/l phosphate additions; Bio.: Bioaugmentation with naphthalene degraders; Ext.C.: 1,000 
mg/l glucose, 100 mg/l sodium acetate, 25 mg/l naphthalene solution, and 5% and 2.5% (w/w) 
Tween 80 additions; Naphthalene is a 2-ring PAH 
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Table D.14. Summary of Selected Results for Phase II: Chemical Oxidation of the Nutrients 
Set (Reactors 3 and 4) 

Chemical Oxidation / 
Parameters 

pH DO, mg/l Ammonia, 
mg/l 

Nitrate, 
mg/l 

O-P, mg/l TOC, 
mg/kg 

Fenton's Reagent1 
Replica 2.5 5.4 0.026 1054.0 0.350 34368.4 

2.5 5.6 0.029 930.0 0.280 27347.7 
Average 2.5 5.5 0.027 992 0.315 30858.1 

stdev 0.0 0.1 0.002 87.681 0.049 4964.4 

Ozone1 
Replica 5.3 4.2 0.022 2356.0 0.090 31306.0 

5.4 5.7 0.022 2666.0 0.100 33149.0 
Average 5.4 4.9 0.022 2511 0.095 32227.5 

stdev 0.1 1.1 0.000 219.2 0.007 1303.2 

Peroxone1 
Replica 5.2 1.9 0.020 2356.0 0.330 27635.0 

5.4 5.1 0.020 2418.0 0.430 33024.0 
Average 5.3 3.5 0.020 2387 0.380 30329.5 

stdev 0.1 2.3 0.000 43.841 0.071 3810.6 

Notes: 
1No CFU’s were observed after oxidation 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- DO: Indicates dissolved oxygen 
- O-P: Indicates Ortho-phosphate 
- TOC: Indicates Total Organic Carbon 
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Table D.15. PAH Results for Phase II: Ozonation of the Nutrients Set (Reactors 3 and 4) 

Hour PAH 
Category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

0 
Replica 1 102.29 69.80 172.09 83.81 44.10 24.48 152.39 324.48 

2 144.19 98.46 242.65 122.49 82.57 30.06 235.11 477.77 
Average 123.24 84.13 207.37 103.15 63.33 27.27 193.75 401.12 

Stdev 29.63 20.27 49.90 27.35 27.20 3.94 58.49 108.39 

4 
Replica 1 46.45 36.39 82.85 43.28 16.24 11.95 71.46 154.31 

2 27.68 25.26 52.94 28.84 6.81 0.00 235.11 288.05 
Average 37.06 30.83 67.89 36.06 11.52 5.97 153.29 221.18 
Stdev 13.28 7.87 21.15 10.21 6.67 8.45 115.72 94.57 

8 
Replica 1 91.03 61.22 152.25 74.44 29.54 24.01 127.99 280.24 

2 99.73 66.50 166.23 82.97 53.33 23.70 235.11 401.34 
Average 95.38 63.86 159.24 78.71 41.44 23.85 181.55 340.79 

Stdev 6.15 3.73 9.88 6.03 16.82 0.21 75.75 85.63 

Notes: 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- PAH represented as mg/kg 
- 3% (w/w) ozone at 2.5 scfh 
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Table D.16. PAH Results for Phase II: Peroxone Treatment of the Nutrients Set 
(Reactors 3 and 4) 

Hour PAH 
Category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

0 
Replica 1 102.29 69.80 172.09 83.81 44.10 24.48 152.39 324.48 

2 144.19 98.46 242.65 122.49 82.57 30.06 235.11 477.77 
Average 123.24 84.13 207.37 103.15 63.33 27.27 193.75 401.12 

Stdev 29.63 20.27 49.90 27.35 27.20 3.94 58.49 108.39 

4 
Replica 1 62.54 41.74 104.27 51.17 33.48 15.32 99.97 204.24 

2 79.75 53.60 133.35 66.51 44.63 19.21 235.11 368.47 
Average 71.15 47.67 118.81 58.84 39.06 17.26 167.54 286.36 

Stdev 12.17 8.39 20.56 10.85 7.88 2.75 95.56 116.12 

8 
Replica 1 141.62 98.33 239.96 122.53 79.95 34.84 237.32 477.28 

2 93.66 60.70 154.36 74.51 48.95 21.63 235.11 389.48 
Average 117.64 79.52 197.16 98.52 64.45 28.23 236.22 433.38 

Stdev 33.91 26.61 60.53 33.96 21.92 9.35 1.56 62.09 

Notes: 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- PAH represented as mg/kg 
- 3% (w/w) ozone at 2.5 scfh 
- Hydrogen peroxide addition at 100 mg/l every hour for the first four hours and 500 mg/l every 
hour for the next four hours 
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Table D.17. PAH Results for Phase II: Fenton’s Reagent Treatment of the Nutrients Set 
(Reactors 3 and 4) 

Dosing PAH 
Category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

0 
Replica 1 102.29 69.80 172.09 83.81 44.10 24.48 152.39 324.48 

2 144.19 98.46 242.65 122.49 82.57 30.06 235.11 477.77 
Average 123.24 84.13 207.37 103.15 63.33 27.27 193.75 401.12 

Stdev 29.63 20.27 49.90 27.35 27.20 3.94 58.49 108.39 

1 
Replica 1 92.47 64.45 156.91 77.74 40.34 21.34 139.43 296.34 

2 116.27 68.30 184.57 83.28 55.37 23.97 235.11 419.69 
Average 104.37 66.37 170.74 80.51 47.85 22.65 187.27 358.01 

Stdev 16.83 2.72 19.56 3.91 10.62 1.86 67.66 87.22 

2 
Replica 1 115.40 68.89 184.29 83.85 45.43 24.93 154.21 338.50 

2 78.45 56.68 135.13 70.06 27.64 20.75 235.11 370.24 
Average 96.93 62.78 159.71 76.96 36.53 22.84 194.66 354.37 

Stdev 26.12 8.64 34.76 9.75 12.58 2.96 57.21 22.45 

3 
Replica 1 100.10 64.57 164.67 80.19 31.55 25.60 137.34 302.01 

2 71.65 53.94 125.60 69.32 45.65 19.90 235.11 360.71 
Average 85.88 59.25 145.13 74.75 38.60 22.75 186.23 331.36 

Stdev 20.12 7.51 27.63 7.69 9.97 4.03 69.13 41.50 

4 
Replica 1 116.22 70.67 186.89 90.41 36.67 28.63 155.71 342.60 

2 88.62 56.94 145.56 69.14 28.81 22.83 235.11 380.68 
Average 102.42 63.81 166.23 79.77 32.74 25.73 195.41 361.64 

Stdev 19.51 9.71 29.22 15.05 5.56 4.10 56.15 26.93 

5 
Replica 1 105.92 41.56 147.49 35.14 0.00 0.00 35.14 182.62 

2 58.94 25.01 83.95 31.15 0.00 0.00 235.11 319.07 
Average 82.43 33.29 115.72 33.14 0.00 0.00 135.13 250.85 

Stdev 33.22 11.70 44.93 2.82 0.00 0.00 141.41 96.48 

Notes: 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- PAH represented as mg/kg 
- Dosing steps no. 1 and 2: 25,000 H2O2 + 2,500 Fe2+; dosing steps no. 3 and 4: 50,000 
H2O2 + 5,000 Fe2+; dosing steps no. 5 and 6: 100,000 H2O2 + 10,000 Fe2+ 
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Table D.17 (Continued) 

Dosing PAH 
Category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Replica 1 47.59 0.00 47.59 0.00 0.00 0.00 0.00 47.59 
6 2 102.38 54.03 156.41 43.95 0.00 0.00 235.11 391.52 

Average 74.98 27.02 102.00 21.97 0.00 0.00 117.56 219.56 
Stdev 38.74 38.21 76.95 31.08 0.00 0.00 166.25 243.20 

Notes: 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- PAH represented as mg/kg 
- Dosing steps no. 1 and 2: 25,000 H2O2 + 2,500 Fe2+; dosing steps no. 3 and 4: 50,000 
H2O2 + 5,000 Fe2+; dosing steps no. 5 and 6: 100,000 H2O2 + 10,000 Fe2+ 

Table D.18. Summary of Selected Results for Phase II: Chemical Oxidation of the Bio.+ 
Nutrients Set (Reactors 5 and 6) 

Chemical Oxidation / Parameters pH DO, 
mg/l 

Ammonia, 
mg/l 

Nitrate, 
mg/l 

O-P, 
mg/l 

THC, 
CFUs/ml 

Replica 4.8 5.7 342 1348 0.26 71 
Fenton's Reagent 3.9 5.7 169 3240 0.24 50 

Average 4.4 5.7 255 2294 0.25 61 
stdev 0.6 0.0 122 1338 0.01 15 

Notes: 
- Bio.: Bioaugmentation with naphthalene degraders 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- DO: Indicates dissolved oxygen 
- O-P: Indicates Ortho-phosphate 
- THC: Indicates Total heterotrophic counts 
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Table D.19. PAH Results for Phase II: Fenton’s Reagent Treatment of the Bio.+ Nutrients Set 
(Reactors 5 and 6) 

Dosing PAH 
Category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

0 
Replica 1 95.66 59.76 155.42 75.30 30.76 22.13 128.19 283.61 

2 96.90 161.30 258.19 178.40 69.30 33.88 235.11 493.31 
Average 96.28 110.53 206.81 126.85 50.03 28.01 181.65 388.46 

Stdev 0.88 71.79 72.67 72.90 27.25 8.31 75.60 148.28 

1 
Replica 1 102.21 60.57 162.78 82.29 35.04 26.14 143.48 306.27 

2 57.80 129.69 187.49 196.01 109.21 56.11 235.11 422.60 
Average 80.01 95.13 175.14 139.15 72.13 41.13 189.30 364.43 

Stdev 31.41 48.88 17.47 80.41 52.44 21.19 64.79 82.26 

2 
Replica 1 16.05 60.71 76.75 86.19 34.97 13.83 134.99 211.74 

2 54.80 63.43 118.23 64.81 16.05 0.00 235.11 353.34 
Average 35.42 62.07 97.49 75.50 25.51 6.91 185.05 282.54 

Stdev 27.40 1.92 29.33 15.12 13.37 9.78 70.80 100.13 

3 
Replica 1 72.59 45.97 118.56 68.54 41.40 10.00 119.94 238.49 

2 121.90 59.03 180.93 93.05 52.67 26.85 235.11 416.04 
Average 97.25 52.50 149.74 80.79 47.04 18.42 177.52 327.27 

Stdev 34.87 9.23 44.10 17.33 7.97 11.91 81.44 125.54 

4 
Replica 1 150.96 76.16 227.13 110.66 59.51 36.63 206.80 433.93 

2 20.02 39.72 59.74 59.83 26.69 10.11 235.11 294.85 
Average 85.49 57.94 143.43 85.25 43.10 23.37 220.96 364.39 

Stdev 92.59 25.77 118.36 35.94 23.21 18.76 20.02 98.34 

5 
Replica 1 83.16 45.65 128.81 63.73 44.48 11.77 119.99 248.80 

2 84.95 59.29 144.24 92.60 38.77 28.95 235.11 379.35 
Average 84.06 52.47 136.52 78.17 41.63 20.36 177.55 314.08 

Stdev 1.26 9.65 10.91 20.41 4.04 12.14 81.40 92.31 

Notes: 
- Bio.: Bioaugmentation with naphthalene degraders 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- PAH represented as mg/kg 
- Dosing steps no. 1 and 2: 25,000 H2O2 + 2,500 Fe2+; dosing steps no. 3 and 4: 50,000 
H2O2 + 5,000 Fe2+; dosing steps no. 5 and 6: 100,000 H2O2 + 10,000 Fe2+ 
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Table A.19. (Continued) 

Dosing PAH 
Category 

2-ring 
PAH 

3-ring 
PAH 

Light 
PAHs 

4-ring 
PAH 

5-ring 
PAH 

6-ring 
PAH 

Heavy 
PAHs 

Total 
PAHs 

Replica 1 50.53 35.39 85.92 51.54 21.82 0.00 73.37 159.29 
6 2 91.98 42.84 134.82 64.68 30.77 20.37 235.11 369.93 

Average 71.26 39.12 110.37 58.11 26.30 10.18 154.24 264.61 
Stdev 29.31 5.27 34.58 9.29 6.33 14.40 114.37 148.95 

Notes: 
- Bio.: Bioaugmentation with naphthalene degraders 
- Nutrients: 1,000 mg/l nitrate and 400 mg/l phosphate additions 
- PAH represented as mg/kg 
- Dosing steps no. 1 and 2: 25,000 H2O2 + 2,500 Fe2+; dosing steps no. 3 and 4: 50,000 
H2O2 + 5,000 Fe2+; dosing steps no. 5 and 6: 100,000 H2O2 + 10,000 Fe2+ 

Table D.20. pH Levels of Ferrous Sulfate and Hydrogen Peroxide 

Before Addition After Addition 
Ferrous Sulfate1 Hydrogen Peroxide2 Ferrous Sulfate + Hydrogen 

Peroxide 
Replica 1 3.18 3.37 1.65 

2 3.14 3.7 1.71 
Average 3.16 3.54 1.68 

Stdev 0.03 0.23 0.04 

Notes: 
125,000 mg/l ferrous sulfate solution 
2150,000 mg/l hydrogen peroxide solution 
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